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ABSTRACT. Since their introduction, transformer models such as BERT have revolutionized natural

language processing with their ability to generate contextual word embeddings. It has been hypoth-

esized that structural information about language is encoded in the geometry of these contextual

embeddings. Recently, efforts have been made to embed BERT’s embedding space into Riemannian

manifolds such that syntactically related words are mapped to nearby points in the manifold. However,

the ability of transformers like BERT to perform syntactically complex operations suggests a much

deeper knowledge of syntax than a simple notion of when two words are syntactically related.

In this thesis, I assess the extent to which more specific and complex structural relations can be

reliably recovered from BERT embeddings using geometric methods. Specifically, I investigate the

extent to which (1) specific directions in Riemannian manifolds correspond with particular types of

syntactic dependencies and (2) constituent subtrees are embedded in a consistent manner.

1. INTRODUCTION

Since their introduction to the field of natural language processing, transformer architectures have

revolutionized the ways in which computers are able to interact with linguistic data. Particularly

successful have been massive transformer models like BERT (Devlin et al., 2018), which quickly

overtook state of the art models in a broad array of NLP tasks, or more recently the ChatGPT model

developed by OpenAI which has become a pop culture phenomenon.

There is now significant evidence that transformer models of sufficient size are able to accurately

perform tasks which require some degree of command over syntax. It has therefore become a major

problem in computational linguistics to understand the mechanisms by which transformers encode

and process syntactic data. One hypothesis first posed by Hewitt and Manning (2019) suggests

that this mechanism is fundamentally geometric in nature. More specifically, they used a so-called

structural probe to identify a subspace of BERT’s embedding space in which words which are

closely syntactically related are mapped to nearby points while more distantly related words are

mapped farther apart from one another. Using this method, the authors were able to reconstruct

dependency parses of sentences from BERT embeddings with a high degree of accuracy.

Building on this result, Auyespek et al. (2021) and Chen et al. (2021) have developed a modified

structural probe which instead models the syntactic subspace of BERT using a hyperbolic space and



GEOMETRIC PROBES FOR CONSTITUENCY STRUCTURE IN BERT EMBEDDINGS 3

projects BERT embeddings into this hyperbolic space. It is a well documented phenomenon that

models which embed data into hyperbolic spaces tend to exhibit an inductive bias toward hierarchical

generalization patterns, in contrast with models embedding data into Euclidean spaces, which exhibit

an inductive bias toward linear generalization patterns. This general pattern was reflected in the

development of these hyperbolic structural probes, which outperformed their Euclidean counterparts

even with lower-dimensional embedding spaces.

However, if BERT’s mechanism of encoding syntax is fundamentally geometric, as these authors

suggest, then we should expect the geometry of BERT’s embeddings to reflect certain properties of

the syntax of natural language. Specifically, it would be reasonable to expect BERT’s embeddings

to respect the compositionality of language: the notion that the meaning of a syntactic construction

is built up from the meanings of its constituent pieces.

If BERT respects this property of language, we might expect the natural consequence that when

a phrase with identical internal structure occurs in a variety of contexts, even though the absolute

positions of the word embeddings might vary, the relative positions of the words in the phrase

should be identical. More precisely, any two embeddings of the same phrase should be related by a

rigid symmetry of the ambient space.

We might also reasonably expect that, since our probes are trained to extract the syntactic content

of sentences, they should not be sensitive to purely semantic variations. Namely, if two phrases

occur in the same context with identical syntactic structure but different semantic content, then their

embeddings should be indistinguishable in the ambient space.

In this essay, we argue that if a structural probe fails to exhibit these properties, then it should be

discarded as an explanation for BERT’s encoding of syntax. We develop a mechanism for testing

these properties, and use this mechanism to assess structural probes trained via various properties.

The essay is structured as follows. Section 2 provides background on the transformer architecture

as well as a relatively thorough review of the fundamentals of Riemannian geometry. Section 3

reviews previous attempts to identify geometric encodings of syntactic data. Section 4 describes our

methods for assessing the homogeneity of structural probes and for training homogeneous probes.
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Section 5 presents the results of our inquiries. Section 6 concludes and proposes future directions

for research.

2. BACKGROUND

2.1. Attention, Transformers, and Contextual Embeddings.

2.1.1. Long Range Dependencies. In many NLP tasks, including next word prediction, translation,

and question answering, model input consists of an entire sequence of input words forming a

sentence or a longer document. Because traditional neural networks map a fixed size input to a fixed

size output, one of the challenges in applying neural networks to NLP tasks is allowing for variable

length input. Early approaches tried chopping input sequences into fixed-size subsequences called

n-grams and training feed forward models on these inputs.

However, in the foundational work of Chomsky (1957), the author demonstrated that natural

languages exhibit unbounded dependencies, in which syntactically related words might be separated

by arbitrarily large distances. Consider the sentence in (1) in which the noun whom is the object of

the verb knew, despite the fact that they are separated by 13 intervening words.

(1) Whom did you say that your friend thought that her father believed . . . that you knew ?

In fact, by adding more nested clauses, this separation of 13 words could be made arbitrarily large.

For this reason, neural network models trained on n-gram inputs have a hard upper bound on

performance on tasks that depend on long range dependencies; they can never identify dependencies

between words separated by more than n words.[citation needed] The recurrent neural network (RNN)

is a model which aims to address this problem by modifying the network architecture. In one basic

form of RNN called a simple recurrent network (SRN), instead of consuming the whole input all at

once and producing output in a single step, the SRN works recursively, consuming as input one

sequence token along with the hidden state produced by the last recursive step. As output, the SRN

produces a new hidden state as well as an output vector. The computation can be schematized as

ht = g(Uht−1 +Wxt), yt = f (V Ht).
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In this way, the network is able to consume arbitrarily long input sequences one token at a time,

hopefully capturing long range dependencies by encoding them in the hidden state.

Problems with this approach are threefold. First of all, at each recurrent step, the entire state of

the model must fit inside a hidden state vector of constant dimension. For long input sequences

with many long range dependencies, there can be too much information to fit into the hidden state

vector, causing decreases in performance.

A second major problem is that stochastic gradient descent (SGD), the standard optimization

algorithm used to train the weights in neural network models, often fails for RNNs taking long

input sequences. The SGD algorithm operates by computing the derivatives of a loss function

with respect to model parameters, and updating the model parameters accordingly to minimize

loss. However, training an RNN using SGD necessitates “unrolling” the recursive structure of the

network in such a way that each recurrent step effectively adds another layer to the model. As the

number of layers increases, the derivative of loss with respect to model parameters approaches 0,

and so training slows to a crawl in what is known as the vanishing gradients problem. While some

RNN architectures like LSTMs and GRUs have been designed with the specific goal of lessening

the impact of vanishing gradients, they remain a challenge when using RNNs to identify long range

dependencies.

A third significant problem with RNNs is that the computations involved are inherently serial

in nature. Recent advances in computing have largely focused on increasing parallelization, but

because RNN models cannot compute ht without first computing h1, . . . ,ht−1, it is difficult for such

models to take advantage of parallel computing resources.

2.1.2. Transformers and Contextual Embeddings. Transformer models aim to resolve these short-

comings of RNNs using a mechanism called attention. Transformer blocks take as input a sequence

(x1, . . . ,xn) and produce an output sequence of the same length (y1, . . . ,yn). In order to produce the

output yk from the input, self-attention heads compare the input word xk to all of the other inputs to

identify those words which are most relevant to processing xk in the given context. The transformer

then runs these relevant inputs through a feedforward layer to compute the yk.
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By using layers of transformer blocks instead of recurrent connections, transformer architectures

avoid the problem of vanishing gradients, and long range dependencies do not have to be compressed

into a single fixed-size vector. Moreover, the inherently parallel structure of the transformer

architecture is well suited to the hardware acceleration available on modern computers. To do (1)

These properties of transformer models allowed them to swiftly overtake several other architecture

types in benchmarks for many NLP tasks. The BERT model developed in Devlin et al. (2018)

was one of the first large transformer models that saw great success, and since its development, a

significant research program has grown around the problem of assessing what aspects of language

structure BERT actually learns. Research has suggested that BERT does encode structural syntactic

information (Bacon & Regier, 2019; Jawahar et al., 2019; Warstadt et al., 2019), however the exact

mechanism of this encoding remains unclear. One proposal, investigated in Auyespek et al. (2021),

Chen et al. (2021), Hewitt and Manning (2019), and Reif et al. (2019), suggests that such structural

data could be encoded geometrically in the contextual word embeddings generated by BERT.

2.2. Riemannian Geometry. Broadly speaking, geometry refers to the field of math focused on

studying shapes. Most people have some degree of familiarity with the plane geometry of Euclid and

its applications in calculating lengths, angles, and areas of shapes drawn in a flat plane. However,

many problems related to shapes do not fit neatly into this planar Euclidean paradigm.

For instance, it is a well known result of Euclidean geometry that, given any triangle in the plane,

its three interior angles always sum to a total of exactly 180 degrees. However, with a little bit of

thought, it is not hard to construct examples which seem to contradict this fact. Imagine if all of the

oceans on the Earth were replaced with dry land so that one could walk all over the surface of the

planet. Setting out from the North Pole, a person could walk due south along the prime meridian

through Greenwich until they hit the equator, then turn 90 degrees right and walk due west until

arriving in the Galapagos, and then turn 90 degrees right again and continue north until arriving at

the North Pole. This journey traces out a triangle on the surface of earth with three right angles,

adding to a total of 270 degrees, as sketched in Figure 1.

This apparent contradiction arises due to the curvature of the Earth. As it turns out, the geometry

of curved surfaces can behave quite differently than that of the flat plane, and the field of Riemannian
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FIGURE 1. A triangle on the surface of the sphere with three right angles.

geometry gives us the tools that we need to describe and understand the geometry of curved surfaces

and spaces.

2.2.1. Topological Manifolds. Before attempting to formally define the objects and concepts of

Riemannian geometry, it is worthwhile to return to the example of the spherical surface of the Earth

and consider some of its notable properties. First of all, while we have observed that the global

geometry of the sphere differs from that of the flat plane, if we zoom in and restrict our attention to

a small neighborhood on the surface of the sphere, we find that the local geometry of the sphere is

practically the same as that of the plane. As relative small creatures living on a very large sphere,

this is reflected in our daily life; without making observations over long distances, it is impossible

to distinguish our round Earth from a flat plane.

To generalize this notion, we will introduce a few concepts from the field of topology. This is

a subfield of geometry which studies shapes without any notion of distance or angle. For those

familiar with elementary Euclidean geometry, this might sound like a strange notion: what can

one say about a shape without measuring any distances? For an example, consider three shapes: a

cube, a sphere, and a flat plane. If we build a cube out of elastic rubber, it is not hard to imagine

“inflating” the cube, allowing its faces to puff out until the cube becomes indistinguishable from a

sphere. Importantly, we can perform this deformation continuously, without tearing the rubber. In

contrast, there is no way to continuously stretch the sphere into the shape of a flat plane without

ripping a hole in its surface. Therefore, the sphere and the cube are indistinguishable to a topologist

who cannot measure distances or angles, while the sphere and the plane are topologically distinct.

Two shapes which cannot be distinguished by a topologist are said to be homeomorphic.
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Applying this terminology to the example of the Earth, we have observed that even though

the global topology of the Earth’s surface is that of a sphere, any small neighborhood is locally

homeomorphic to a small neighborhood of the plane. In terms of this language, we arrive at a

natural definition which generalizes this notable property of the sphere.

Definition 2.1. A surface S is a space in which each point p ∈ S admits some small neighborhood

U which, up to homeomorphism, is indistinguishable from a small neighborhood of the Euclidean

plane.

While this definition is sufficient to describe many interesting geometric objects (spheres, tori,

Möbius strips, Klein bottles, etc.), it is not quite powerful enough to describe the word embeddings

generated by BERT. Because surfaces look locally like a plane, they are inherently 2-dimensional

objects. BERT embeddings, on the other hand, are 1024-dimensional vector spaces, so any effort

to collapse them down to just 2 dimensions is unlikely to preserve enough information to tell us

anything interesting about syntactic structure. In order to describe high dimensional data like word

embeddings, we use the following natural generalization.

Definition 2.2. An n-dimensional manifold (or n-manifold) M is a space in which each point p ∈M

admits a small neighborhood U which, up to homeomorphism, is indistinguishable from a small

neighborhood of the n-dimensional Euclidean space Rn.

Example 1 (The 3-dimensional torus). Imagine a cube-shaped room with teleportation portals

built into the walls, floor, and ceiling. If you walk into any side of the room, you emerge from

the opposite side (much like the controls of the classic game Asteroids). Locally, this space is

indistinguishable from R3, so this is an example of a 3-dimensional manifold.

One significant challenges of working with abstract topological spaces is the difficulty of describ-

ing points in the space. For instance, it is not clear how to describe a specific point on the surface

of a doughnut without pointing at a picture. One of the convenient properties of manifolds is that,

because they are locally indistinguishable from Euclidean space, we can put local coordinates on

our manifolds, allowing us to describe points in our manifolds using numerical coordinates.
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Example 2 (Stereographic coordinates). As noted earlier, the global topology of the sphere is

distinct from that of the plane, so there cannot be any single coordinate chart covering the entire

sphere. However, if we subtract the North Pole of the sphere (which we denote by N), then we

can cover the rest of the sphere with so-called stereographic coordinates as sketched in Figure 2.

We will assume that the sphere has radius 1, and place it in R3 centered at (0,0,1) such that the

FIGURE 2. The stereographic projection of the sphere. N denotes the North Pole of
the sphere, and the stereographic coordinates of p are given by (x,y).

xy-plane is tangent to the sphere at the origin. Then, for any point p on the surface of the sphere

(away from N), there is a unique line passing through N and p. By reading off the xy-coordinates at

which this line intersects the xy-plane, we obtain coordinates for the point p.

While coordinates provide us one tool for describing and visualizing manifolds, another useful

approach is to embed manifolds inside of higher dimensional spaces. Understanding the sphere was

made easier because we were able to embed the 2-dimensional surface of the sphere inside of our

ordinary 3-dimensional space. In fact, it can be proven that every n-dimensional manifold can be

embedded into the higher dimensional Euclidean space R2n+1. This can sometimes provide a useful

perspective for thinking about manifolds in higher dimensions.

2.2.2. Riemannian Metrics. With these topological foundations in place, we can now return to the

goal of fitting traditional geometric concepts such distances and angles into this new setting. In

order to define a reasonable notion of distance on a manifold, it is worthwhile to remind ourselves

of how to measure distances in ordinary Euclidean spaces. If γ : [0,1]→ Rn is a smooth curve, then
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we can compute its velocity γ̇(t) by simply taking the derivative of γ at time t. Then the speed of

γ at time t is simply the Euclidean norm of this velocity, defined in terms of the dot product by

‖γ̇(t)‖=
√

γ̇(t) · γ̇(t). Finally, we compute the arclength along γ by the integral

(1)
∫ 1

0
‖γ̇(t)‖dt.

Also recall that, to measure the angle θ between vectors v,w ∈ Rn, we can use the identity

v ·w
‖v‖‖w‖

= cosθ .

The key observation here is that, in order to work with distances and angles, we need (i) language

to describe velocities and directions, and (ii) some notion generalizing the dot product of vectors.

The following definitions will fill exactly these roles and will finally give us the tools we need to

think about classical geometric concepts on manifolds.

Definition 2.3. Given a manifold M and a point p ∈M, the tangent space to M at p is the vector

space of all velocities with which a curve in M can pass through p.

This definition is best understood by example. Consider the 2-dimensional surface of the sphere

embedded in R3. To do (2)

Next, we need to generalize the dot product. In the language of linear algebra, an inner product

on a vector space V is a symmetric, positive definite, bilinear form on V . This means that, to every

pair of vectors v,w ∈ V , the inner product is a real number denoted by 〈v,w〉 which shares the

following properties with the dot product:

(i) (Symmetry) For any pair of vectors v,w ∈V , 〈v,w〉= 〈w,v〉.

(ii) (Linearity) For any vectors u,v,w ∈V and a ∈ R, 〈u+ v,w〉= 〈u,w〉+ 〈v,w〉 and 〈av,w〉=

a〈v,w〉.

(iii) (Positive definiteness) For any vector v ∈V , 〈v,v〉 ≥ 0 with 〈v,v〉= 0 only for v = 0.
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When a vector space is endowed with an inner product, it is possible to measure the magnitude of

vectors and the angle between vectors by

‖v‖=
√
〈v,v〉 cosθ =

〈v,w〉
‖v‖‖w‖

.

Definition 2.4. A Riemannian metric g on a manifold M is a smoothly varying choice of inner

product for each tangent space TpM.

This is the last piece of data that is required to translate all of the classical concepts of plane

geometry into the non-Euclidean setting. For instance, if γ : [0,1]→M is a smooth curve, then we

can define the arclength of γ to be

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt,

just as in the Euclidean case (c.f., Equation (1)).

Example 3 (Round spherical metric). If M is the two-dimensional surface of the unit sphere, then if

we throw away the prime meridian together with the North and South poles, we can put coordinates

on the rest of the sphere by (θ ,φ) where 0 < θ < π is the azimuthal angle of a point (the angle

from the point to the north pole) and 0 < φ < 2π is the polar angle (the east/west angle away from

the “prime meridian”), as sketched in Figure 3. Because the sphere can be embedded in R3 as the

FIGURE 3. Spherical coordinates on the round sphere. The azimuthal angle is
denoted by φ and the polar angle by θ .
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unit sphere, it inherits a metric which is given in these coordinates by

g =

1 0

0 sin2
θ

 .
Therefore, if γ : (0,π)→M is the meridian curve given by γ(t) = (t,π), then we have γ̇(t) = (1,0),

and so the arclength of γ is given by

∫
π

0

√√√√√[1 0
]1 0

0 sin2
π

1

0

dt =
∫

π

0
dt = π,

which agrees with the fact that the circumference of any great circle on M is 2π .

2.2.3. Curvature. The final ingredient in our study of BERT’s word embeddings is a discussion

of curvature. Recall our earlier observation that, while triangles in the plane have internal angles

summing to 180 degrees, while those on the surface of a sphere have angles summing to more than

180 degrees. This behavior is due to the fact that the sphere is curved, and by generalizing the notion

of curvature to Riemannian manifolds in higher dimensions, we can learn a lot about their geometry.

Given a connected 1-dimensional manifold, often called a curve, embedded in a higher dimen-

sional space Rn, we can parameterize it in terms of a single real-valued variable by r : R→ Rn.

Then the curvature at a point p is simply the second derivative of the curve with respect to arclength.

That is, curvature describes how the direction of the curve changes as you walk along it.

In the case of 2-dimensional surfaces, there are a few different ways that one can think about

curvature. At each point on a surface S, one can always identify two orthogonal geodesic curves, the

so called principle curves, of maximal and/or minimal curvature. We obtain the intrinsic Gaussian

curvature at p by multiplying these two principle curvatures together. Notably, however, we negate

the Gaussian curvature if the two principle curves curve in opposite directions. For an example,

consider the surfaces in ??. On the sphere on the left, the two principal curves both curve away

from us, in the direction of the sphere, so when we multiply their curvatures, the result will be a

positive Gaussian curvature. On the cylinder, one principle curve bends away from us while the

other does not bend at all; thus the Gaussian curvature is 0. Finally, on the saddle shaped surface,
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one principle curve bends up and the other bends down. Since these bend in opposite directions, we

say that the saddle surface has negative Gaussian curvature.

Another way of interpreting Gaussian curvature is that it measures the deviation of the area of

a small circle from what we would expect in flat space. It can be proven that Gaussian curvature

satisfies the equation

κ = lim
r→0+

12
πr2−A(r)

πr4 .

Thus, in spaces where κ is positive, circles have greater area than in flat space, and in spaces where

κ is negative, circles have less area than in flat space. This interpretation will prove useful shortly

when we discuss the use of hyperbolic spaces in neural networks.

In higher dimensions, the story of curvature becomes more complicated. There is an intricate

theory allowing one to define the so-called Riemann curvature tensor on any Riemannian manifold.

However, compared to the low dimensional cases, this tensor is more difficult to work with or

interpret, so instead, we will discuss the notion of sectional curvature. At any point p in an n-

dimensional manifold, we can choose a 2-dimensional subspace of the tangent space Π ⊂ TpM.

Then, we can consider the space of all geodesic curves passing through p with velocity contained

in Π. Locally, these curves sweep out a 2-dimensional submanifold contained in M, an we define

the sectional curvature associated with Π, denoted by sec(Π), to be the Gaussian curvature of this

2-dimensional surface.

2.3. Hyperbolic Spaces. Of particular interest in our investigation of BERT’s embeddings will

be Riemannian manifolds of constant, negative sectional curvature, called hyperbolic spaces. By

constant sectional curvature, we mean that for any point p∈M and any plane Π⊂ TpM, the sectional

curvature sec(Π) is equal to some constant.

These negatively curved spaces can be difficult to visualize because, unlike familiar shapes

like the sphere, no hyperbolic space admits an embedding into Euclidean 3-space. Thus, in

order to visualize hyperbolic spaces, we resort to various so-called model spaces. We will be

most interested in the Poincaré ball model of hyperbolic space. Given c > 0, we define the

space Dn
c = {x ∈ Rn | c‖x‖2 < 1}, metrized using the Riemannian metric gDx = (λ c

x )
2 where
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λx = 2/(1− c‖x‖2) is called the conformal factor. It can be shown that the resulting space has

constant sectional curvature −c.To do (3)

Recalling that, in spaces with negative curvature, circles grow faster than in flat space, let us

consider the possible benefits of embedding syntactic data in hyperbolic spaces rather than Euclidean

spaces. One of the basic assumptions of modern linguistic theory is that the structure of language is

fundamentally hierarchical in nature. This is nowhere more evident than in syntax, where data is

typically presented in tree-like

Note that, as the depth of a tree grows, the number of nodes in the tree grows exponentially.

Contrast this with the fact that, in Euclidean space, as the radius of a ball grows, its volume

only grows with polynomial speed. Because exponential growth is faster than any polynomial

group, sufficiently deep trees will always fail to admit isometric embeddings into Euclidean spaces.

However, in hyperbolic spaces with negative curvature, the volume of a ball grows exponentially

with respect to radius, so arbitrarily deep trees can be isometrically embedded in hyperbolic space.

Thus, hyperbolic spaces are often said to impart an inductive bias towards learning hierarchical

representations of data, a fact which we will rely heavily upon in the following work.

3. RELATED WORK

3.1. Probing Language Models. The so called “interpretability problem” is not unique to natural

language processing. Across the field of machine learning, the task of interpreting the internal

representations computed in neural network models has come to be viewed as one of the fundamental

challenges of the field. Probing methods have emerged as one powerful set of tools for understanding

how data is encoded by neural networks, and have been applied in natural language processing

to assess the extent to which neural networks’ representations of language encode syntactic and

morphological information (Belinkov et al., 2017; Peters et al., 2018).

Definition 3.1 (Probe). Let M be an abstract language which maps sequences of words to sequences

of vectors, so that if s = (w1, . . . ,wn) is a sequence of words belonging to the vocabulary W , then

M assigns to s a sequence (x1, . . . ,xn), where the xi are vectors belonging to a hidden space Rd .
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Let q be a linguistic property which can be computed for each word in a sentence. Let S denote the

set of linguistically well-formed sequences (w1, . . . ,wn), and let Sn denote the subset of sentences of

length n. Then, broadly, we can think of q as a map Sn→Un, where U is some codomain measuring

the relevant linguistic property.

Then a word-level probe for the property q on the model M is a map Rd →U which assigns a

value in U to each embedding vector. Assuming that L : U×U →R+ is a loss function on U , then

given a dataset S⊂ S, we assess the accuracy of the probe p using the loss function

∑
s∈S

|s|

∑
i=1

L (q(s)i, p(M (s)i)).

For example, consider the situation in which M is a transformer model. Following [citation needed],

we will examine the embeddings produced at a single layer of M , so that we can treat the transformer

model as a simple function of the sort described in the above definition. Suppose that we would like

to understand the extent to which M encodes information about the part-of-speech of words. If C

is a finite set of part-of-speech classes (e.g., C = {N,V,Adj, . . .}), then we can define U to be the

set of probability distributions over C. Then q : S→UN maps each word in a given input sentence

to the probability distribution which assigns 100% probability to the correct part-of-speech class.

A word-level part-of-speech probe for M would thus be a map Rd → U which, given an

embedding vector, outputs a probability distribution of part-of-speech classes. Using the usual

negative log likelihood loss function on U , we can assess the quality of the probe across a data set.

In a simple case, the probe might consist of a single linear map Rd→R|C| followed by a softmax

function. In this case, the probe has d|C| parameters (the weights of the linear map), and the loss

function is differentiable with respect to these weights, so using standard gradient-descent methods,

we can train the probe to optimize its performance on a training set.

Because the only input to the probe is the output of the language model (whose weights are

not modified during the probe’s training procedure), if the probe learns to correctly classify the

part-of-speech classes of the words in an input sequence, we conclude that the relevant syntactic

and/or morphological data must have been preserved by the vector embeddings. Critically, if the

probe is sufficiently simple, we might have license to conclude that, not only was the relevant data
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preserved by the probe, but in fact it was extracted or somehow made salient. The reasoning here is

that, especially for multi-sense words, if we take a single linear layer with softmax activation and

feed it inputs consisting of one-hot word encodings, there is a hard upper bound on how well it can

perform part-of-speech classification. Therefore, if our probe exceeds that limit, then that increase

in ability can only be due to the language model which we are probing.

This line of reasoning raises the key question of how simple a probe must be in order to conclude

that its performance is due to the processing of the language model. For example, especially if

we relax the constraint that the probe must act pointwise on a single word at a time (a necessary

modification, as will become clear shortly), a sufficiently complex probe could perform quite well

on some tasks even if the model M does minimal/no processing of its inputs. In such a case, it

would certainly be misguided to conclude that M has extracted or highlighted the relevant linguistic

data: all we can say is that it has preserved the relevant data (or has preserved enough information

for the probe to reconstruct the relevant data).

While this assumption has been challenged by Pimentel et al. (2020), we will follow Hewitt and

Liang (2019) in the assumption that simpler probes give a better metric for assessing the extent to

which a language model’s embeddings encode linguistic data.To do (4).

3.2. A Geometric View of Neural Networks. Another recent approach to interpreting neural

networks, explored in detail in Hauser and Ray (2017), is to treat them as fundamentally geometric

objects. In the simplest multi-layer perceptron (MLP) architectures, each layer consists of a linear

transformation together with a nonlinear activation function (typical activation functions include

sigmoid, tanh, or ReLU). The activation function defines a continuous deformation of the hidden

embedding space, while the learned weights of the linear transformation determine the directions

and scales over which this deformation is applied. In a binary classification task, for example, a

multilayer perceptron might learn a continuous deformation of the embedding space such that the

two classes become linearly separable.

Hewitt and Manning (2019) proposes a so-called structural probe for identifying syntactic data in

BERT’s contextual word embeddings which, as we will see, is intimately related to this geometric

view of neural networks. This probe differs from the word-level probes described above in that,
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rather than learning a word-level task q : Sn → Un, it learns a sentence-level task q : Sn → Un,

assigning a single element of Un to each sentence. In the particular case of Hewitt and Manning’s

structural probe, Un is the space of n×n matrices, and q assigns to each sentence s the distance

matrix arising from a dependency parse of s. Here, the subscript on Un serves only to remind us that

the codomain depends on the length of the input sentence.

More precisely, for any well-formed sentence s, it is assumed that there is a unique dependency

parse tree which captures certain aspects of the syntactic structure of s. The vertices of this tree

are exactly the words of the sentence. Then for a sentence s = (w1, . . . ,wn), q(s) is the symmetric

distance matrix d whose di j entry is the number of edges along the unique path from wi to w j in the

dependency tree of s.

Critically, the probe p is forced to be as simple as possible in the sense that it consists only

of a rank k symmetric positive semi-definite quadratic form B on the embedding space. That is,

p : (Rd)n→U assigns to each sequence (x1, . . . ,xn) the n×n matrix whose (i, j)-entry is given by

B(xi− x j).

An alternative, but mathematically equivalent description of the probe can be formulated as

follows. Instead of a rank k bilinear form, we simply say that the probe p consists of a k×d matrix

A, and the (i, j)-entry of p(x1, . . . ,xn) is simply the squared Euclidean distance between Axi and

Ax j.

Under this second perspective, the fundamentally geometric character of Hewitt and Manning’s

structural probe becomes clear. The dependency structure of the sentence s ∈ S endows it with

the structure of the metric space, and when the probe is trained using an L1 loss function on

Un = Matn×n, the probe almost induces an isometric embedding of s into Rk. We say that this

embedding is almost isometric because the tree-distance in s is approximated bot by the Euclidean

distance in Rk but rather by the squared Euclidean distance. We will call such an embedding a

squared-distance embedding.

The reason for using the squared Euclidean distance is in fact quite simple: in general, not every

tree admits an isometric embedding in Rk. Consider, for example, the tree in ??. In order to see

that this tree does not admit an isometric embedding into Euclidean space of any dimension, we



18 THEODORE SANDSTROM

use a simple proof by contradiction. In order to achieve such an embedding, the points x1 and x2

would necessarily be colinear, with x0 their midpoint. However, the same can be said about x1 and

x3. This forces x2 and x3 to coincide, contradicting the assumption that d(x2,x3) = 2.

On the other hand, it is not hard to show that every tree admits a squared-distance embedding

into some Euclidean space of sufficiently high dimension. The case of trees with a single vertex is

trivial, and we proceed by induction on the number of vertices. If T is a tree with n vertices, then

choose one leaf vertex x and let y be the parent of x. By the inductive hypothesis, there exists a

squared-distance embedding of T \{x} into Rk for some k. Viewing Rk as a subspace of Rk+1, we

can insert x into Rk+1 a distance 1 from y in a direction orthogonal to the hyperplane containing

T \{x}. By the pythagorean theorem, for each vertex z ∈ T \{x}, we have

‖z,x‖2
Euc = ‖z,y‖2

Euc +‖y,x‖2
Euc = d(z,y)+1,

where d denotes tree distance. The last equality in the above arises from the inductive hypothesis

that T \{x} is mapped into Rk by a squared-distance embedding. By the assumption that x is a leaf

and y is the parent of x, we conclude that ‖z,x‖2
Euc = d(z,x) for all z ∈ T , and so the entire tree is

squared-distance embedded in Rk+1.

In view of these two results, training a structural probe to perform squared-distance embedding

of dependency parse trees into Euclidean space seems a somewhat more natural task. If the probe

learns to perform the task well, then it provides compelling evidence that (a) syntactic data can be

extracted from BERT’s contextual word embeddings and (b) this data is encoded in the geometry of

the embeddings, in the sense that some k-dimensional subspace of the embedding space admits a

Euclidean metric such that squared Euclidean distance recovers the tree distance between words in

the dependency parse tree.

3.3. Hyperbolic Probes. As discussed in Section 2.3, when it comes to embedding trees in

Riemannian manifolds, some of the shortcomings of Euclidean space can be overcome in hyperbolic

spaces. Recent evidence suggests that in machine learning tasks focused on hierarchical data

like trees, hyperbolic representations can significantly outperform Euclidean embeddings (De Sa

et al., 2018; Ganea et al., 2018a; Nickel & Kiela, 2017). In fact, Chen et al. (2021) demonstrated
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a modification of the structural probe of Hewitt and Manning (2019) which results in a square-

distance embedding of dependency trees into the Poincaré ball that outperforms Euclidean probes,

and Auyespek et al. (2021) used a similar technique to achieve, not a squared-distance embedding,

but an honest isometric embedding into the Poincaré ball.

The squared distance probe developed in Chen et al. (2021) operates in three phases: first, like the

Euclidean probe of Hewitt and Manning (2019), they train a linear map P : Rd → Rk, where k is the

rank of the probe (alternatively, the dimension of the syntactic subspace). Next, following Ganea

et al. (2018b) and Mathieu et al. (2019), they identify the codomain Rk with T0Dk
c, the tangent space

to the Poincaré ball at the origin, and exponentiate the resulting tangent vectors to obtain points in

Dk
c. Finally, they train a k× k matrix Q and apply Möbius matrix-vector multiplication (as defined

in Section 2.3) to transform the points in the Poincaré ball. Thus, if h ∈ Rd is a contextual word

embedding produced by the language model, then the probe embeds this point at Q⊗exp0(Ph)∈Dk
c.

As the authors note, the definition of Möbius multiplication is such that Q⊗ exp0(Ph) =

exp0(QPh), and so this final step does not in fact increase the complexity of the probe in the

sense that the resulting probe is equivalent to one with only dk probe parameters. Rather, they claim

that the extra step helps to stabilize the optimization process. Thus, there is a reasonable claim to be

made that this squared-distance Poincaré probe is among the simplest possible maps from Rd to Dk
c,

in the sense that any such map must include some linearity, and this map consists only of a linear

map and a canonical, geometrically motivated nonlinear function.

Auyespek et al. (2021) also use a three step method to map contextual word embeddings into the

Poincaré ball. Instead of using an exponential map to project Rk onto Dk
c, they use in two different

trials the gnomonic map and the hyperboloid map, defined respectively by

g(x) =
x√

1+‖x‖2
h(x) =

x

1+
√

1+‖x‖2
,

although the motivation for choosing these maps is not explained. One consequence is that,

because the Möbius matrix-vector multiplication interacts with the gnomonic and hyperboloid

maps differently than with the exponential map, it cannot be simplified away, and in fact acts as

a second nonlinearity in the probe. This means that the probe is not necessarily equivalent to a
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probe with only kd parameters but rather rather a probe with k(d + k) parameters, and it potentially

allowing for more complex deformations of the geometry of the underlying contextual embeddings.

While this added complexity might help to improve the performance of the probe, it potentially has

the undesirable consequence of allowing the probe to extract features which are not salient in the

geometry of BERT’s contextual embeddings.

3.4. Probing for Constituency. Beyond these attempts to recover the geometry of dependency

parses from BERT’s contextual word embeddings, attempts have also been made to probe BERT for

the types of constituency structures associated with standard syntax trees.

Tenney et al. (2019) demonstrated a probe trained to assign a non-terminal label to a known

constituent in a sentence. Instead of probing the contextual embeddings arising from a single layer

of BERT, the authors compare two different methods for computing contextual word embeddings

which take into account information from multiple layers. The first of these, which they call the

concatenation method, simply concatenates a context-independent subword token with the top layer

activation of the model. The second method, called the mixing method, takes a weighted average

of the context-independent embeddings and the activations from all layers, with weights learned

during the training process. Once these contextual embeddings have been computed, the probe takes

as input a span of several such embeddings corresponding to a known constituent in a sentence,

and it predicts a probability distribution over the set of non-terminal labels. In order to handle

variable-length spans as input, their probe includes a self-attention head and a pooling operator,

followed by a two-layer MLP. The probes trained using the mixing method performed the best,

achieving a binary F1 score of 86.7 on BERT-base and 87.0 on BERT-large.

One potential criticism of this probe is its complexity. Compared to the probes discussed above,

the combination of a self-attention head together with a MLP is quite powerful, and it is at least

plausible that the network is functioning as more of a parser than a probe. That is, because the probe

is so complex, it is difficult to say with confidence that its success is attributable to processing done

by BERT rather than by processing done by the probe. This could potentially be accounted for

by training the probe on a control task in which it was only presented with non-contextual word

embeddings.
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More recently, Arps et al. (2022) developed a family of probes with the goal of reconstructing an

entire constituency parse tree from contextual word embeddings. They use three separate probes

to reconstruct partial information, together with a traditional discrete algorithm to assemble these

pieces of data into a complete parse tree. The three probes, each consisting of a simple linear

classifier trained on contextual word embeddings, predict (a) the label of the least common ancestor

of a pair of adjacent tokens, (b) the relative depths of the least common ancestor of a word with its

neighbors immediately to the left and the right, and (c) the label of single-word constituents.To do (5)

The resulting probes achieved a labeled F1 score of 80.42.

Like the Tenney et al. (2019) probe, this probe takes as input a combination of the activations

from multiple layers of BERT. While this investigation does suggest that BERT’s contextual word

embeddings do expose syntactic data that can be recovered by simple probes, the discrete nature of

the tree-reconstruction algorithm means that very little can be said about how well the geometry of

the embeddings reflects the broader syntactic structure.

4. METHODS

4.1. Tree Reconstruction. Following Chen et al. (2021) and Hewitt and Manning (2019), we train

a family of probes which map contextual embeddings into Riemannian manifolds while preserving

information about the tree-distance between words. In contrast to the dependency parses used in

these earlier works, our probe is trained to reconstruct the tree distance in a dependency parse of a

sentence. Along the lines of Auyespek et al. (2021), our probes are trained to perform isometric

embeddings rather than squared-distance embeddings. In fitting with the geometric framework

described by Hauser and Ray (2017), we treat each layer of BERT as a geometric deformation

of the embedding space. Therefore, rather than training probes on some combination of multiple

layers, we train our probes on a single layer at a time to understand how the geometry is deformed

layer-by-layer.

If s = (w1, . . . ,wn) is an input sentence consisting of n words, denote the contextual word

embedding for wi by xi ∈ Rd . Following Hewitt and Manning (2019), our Euclidean probes consist
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simply of a linear transformation p : Rd → Rk trained on the loss function

n

∑
i, j=1

∣∣d(wi,w j)−‖p(xi− x j)‖
∣∣,

where d is the tree-distance between wi and w j in a constituency parse of s. As discussed in

Section 3.2 this probe structure is equivalent to training a rank-k quadratic form B on Rd with the

loss function
n

∑
i, j=1

∣∣∣∣d(wi,w j)−
√

B(xi− x j)

∣∣∣∣.
Our hyperbolic probe will use the structure described in Chen et al. (2021). The structure is

effectively the same as that of the Euclidean probe, but we identify the embedding space Rk with

the tangent space to Dk
c at the origin, and map the embeddings into Dk

c by an exponential map. The

training objective is
n

∑
i, j=1

∣∣d(wi,w j)−dD(exp0(Bxi),exp0(Bx j))
∣∣.

Once such a probe has been trained, we can apply standard hierarchical clustering techniques to

construct a full binary parse tree. In general, we will use a recursive algorithm in which we build

a tree by recursively merging the closest pair of constituents. After each step, there are several

choices to measure the distance a newly formed constituent to each other constituent in the tree.

These include:

i) The average of the distance to each of the children,

ii) The distance to the nearest child,

iii) The distance to the furthest child,

iv) The distance to the midpoint along the geodesic connecting the two children,

v) One less than the average/minimum/maximum distance to the children.

All of these choices are dependent directly upon the geometry of the Riemannian manifold. We

assess the quality of the resulting parse trees using the PARSEVAL metric of Black et al. (1991).

One challenge in reconstructing constituency parses based on distance matrices is the fact that

distance matrices are highly sensitive to assumptions about the grammar. One approach to stabilizing

the training process is to bias the probe towards reconstructing the gold parse tree. We achieve this
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by adding a second loss function. For each sentence, this second function computes the sequence

of merges which would have to occur to reconstruct that sentence, and assigns as loss the sum of

the distances between all of the merged pairs. In minimizing this loss, the probe is biased towards

reconstructing the correct parse tree.

4.2. Data. One of significant challenge in training structural probes is the necessity for a large

quantity of labeled linguistic data. Following Hewitt and Manning (2019), we train our probes on

the Penn Treebank (Marcus et al., 1993), which contains sentences from 2,499 Wall Street Journal

articles labeled with constituency trees.

5. RESULTS

Report the results of the experiments described in the previous section. This will include

quantitative data presented in tables, and also qualitative data including examples of trees predicted

by our hyperbolic probe.

6. CONCLUSION

Interpret results in the broader context established in the introduction. Detail directions for future

inquiry.
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TO DO. . .

� 1 (p. 6): I think there is some problem where the number of parameters or

the computation cost of the attention grows as O(n2) in a problematic way.

Figure this out.

� 2 (p. 10): Describe the tangent space of the sphere. Also explain that the

derivative of a curve is a velocity vector.

� 3 (p. 14): Demonstrate what the geodesics and isometries of the Poincaré ball

look like.

� 4 (p. 16): There are reasons that I disagree with the analysis in Pimentel et al.

(2020)

� 5 (p. 21): This task seems a bit odd... maybe look at their code to ensure I am

understanding correctly.
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