
Sequential neural networks as automata

William Merrill

Advisor: Dana Angluin

Robert Frank

Department of Computer Science
Department of Linguistics

Yale University

This thesis is submitted for the degree of
Bachelor of Science

April 2019

Acknowledgements

First of all, thanks to my advisors Dana Angluin and Robert Frank for their frequent produc-
tive discussions and detailed edits of my drafts. I really appreciated having advisors who
were as enthusiastic about my senior project as I was. Additional thanks goes to:

• All the members of Computational Linguistics at Yale1, for their general comraderie,
as well as discussions and ideas which helped incubate this project

• 2018-2019 Linguistics Senior Seminar (Anelisa, James, Jay, Jisu, Magda, Noah, Rose,
Hadas, Raffaella)

• Dragomir Radev’s 2018 Advanced NLP Seminar

• Vidur Joshi and others at their Allen Institute for Artificial Intelligence, for their input

• Carl-Gustav Werner, for his awesome runic LaTeX package [28]

Any remaining errors are my own.

1http://clay.yale.edu/

http://clay.yale.edu/

Abstract

In recent years, neural network architectures for sequence modeling have been applied with
great success to a variety of NLP tasks. What neural networks provide in performance,
however, they lack in interpretability and theoretical motivation. This work attempts to
explain the types of computation that neural networks can perform by relating them to
automata. I first define what it means for a real-time network with bounded precision to accept
a language. A measure of network memory follows from this definition. I then characterize
the classes of languages acceptable by various RNNs, attention, and CNNs. I find that
LSTMs function like counter machines and relate CNNs to the subregular hierarchy. Overall,
this work attempts to increase our understanding and ability to interpret neural networks
through the lens of theory. These theoretical insights help explain neural computation, as
well as the relationship between neural networks and natural language grammar.

Table of contents

List of theorems ix

1 Introduction 1
1.1 Background . 1
1.2 Introducing the asymptotic analysis . 2

1.2.1 State complexity . 5

2 Recurrent neural networks 9
2.1 SRNs . 9
2.2 LSTMs . 11
2.3 GRUs . 13
2.4 Summary . 15

3 Other neural sequence models 17
3.1 Convolutional networks . 17
3.2 Attention . 20
3.3 Transformers . 24
3.4 Stack recurrent networks . 25
3.5 Summary . 27

4 Empirical results 29
4.1 Counting . 29
4.2 Counting with noise . 29
4.3 Reversing . 30

5 Rational recurrences 33
5.1 WFSAs . 33
5.2 Simplified counter machines as rational recurrences 34
5.3 General counter machines . 35

viii Table of contents

6 Implications for natural language 37
6.1 Semilinearity of counter languages . 37
6.2 Counter machines and context-free grammars 39
6.3 State complexity of sentence embedding 41

6.3.1 Right embedding . 42
6.3.2 Center embedding . 42
6.3.3 Matched center embedding . 43
6.3.4 The Linzen agreement task . 43
6.3.5 Chomsky dependencies . 44

7 Conclusion 47

References 49

Appendix A Counter machines 53
A.1 The general counter machine . 54
A.2 Counter machine variants . 55
A.3 Relationships between counter classes . 56
A.4 Closure properties of counter classes . 60

Appendix B Linearly separable expressions 63
B.1 Common linearly separable forms . 63

List of theorems

1.2.1 Definition (Neural sequence acceptor) . 2
1.2.2 Definition (Asymptotic acceptance) . 3
1.2.1 Theorem (Arbitary approximation) . 4
1.2.3 Definition (Hidden state) . 5
1.2.4 Definition (Configuration set) . 5
1.2.5 Definition (Fixed state complexity) . 5
1.2.6 Definition (General state complexity) . 6
1.2.2 Theorem (General bound on state complexity) 6

2.1.1 Theorem (SRN state complexity) . 10
2.1.2 Theorem (SRN characterization) . 10
2.2.1 Definition (LSTM layer) . 12
2.2.1 Theorem (LSTM state complexity) . 12
2.2.2 Theorem (LSTM upper bound) . 13
2.3.1 Definition (GRU layer) . 13
2.3.1 Theorem (GRU state complexity) . 14
2.3.2 Theorem (GRU characterization) . 14

3.1.1 Definition (CNN acceptor) . 18
3.1.1 Theorem (CNN upper bound) . 18
3.1.2 Definition (Strictly k-local grammar) . 18
3.1.3 Definition (Strictly local acceptance) . 19
3.1.4 Definition (SLk) . 19
3.1.2 Theorem (Strictly local CNNs) . 19
3.2.1 Definition (Dot-product attention) . 20
3.2.1 Theorem (Asymptotic attention) . 20
3.2.2 Definition (Attention layer) . 21
3.2.2 Theorem (Encoder state complexity) . 22

x List of theorems

3.2.3 Theorem (Attention state complexity with unique maximum) 23
3.2.4 Theorem (Attention state complexity with ReLU activations) 23
3.3.1 Definition (Multihead self-attention) . 24
3.3.2 Definition (Transformer layer) . 24
3.3.1 Theorem (Relation to regular languages) 25
3.4.1 Theorem (Neural stack state complexity) 26

5.1.1 Definition (Path score) . 33
5.1.2 Definition (String score) . 34
5.2.1 Theorem (Rational recurrence of simplified counter machines) 34
5.3.1 Conjecture (The general case) . 35

6.1.1 Definition (Parikh vector) . 37
6.1.2 Definition (Parikh mapping) . 37
6.1.3 Definition (Semilinear set) . 38
6.1.4 Definition (Semilinear language) . 38
6.1.5 Definition (Stateless simplified counter languages) 38
6.1.1 Theorem (Semilinearity of Q̃SCL) . 38
6.1.1 Conjecture (Semilinearity of SCL) . 39
6.1.2 Conjecture (Semilinearity of CL) . 39
6.2.1 Definition (Ln) . 40
6.2.1 Theorem (Weak evaluation) . 40
6.3.1 Definition (Right embedding grammar) 42
6.3.2 Definition (Center embedding grammar) 43
6.3.3 Definition (Matched center embedding grammar) 43
6.3.4 Definition (Chomsky dependency) . 44
6.3.5 Definition (Dependency set) . 44

A.1.1Definition (General counter machine) . 54
A.1.2Definition (Zero-check function) . 54
A.1.3Definition (Counter machine computation) 54
A.1.4Definition (Real-time string acceptance) 55
A.1.5Definition (Real-time language acceptance) 55
A.1.6Definition (Counter languages) . 55
A.2.1Definition (Simplified counter machine) 55
A.2.2Definition (Simplified counter languages) 55
A.2.3Definition (Incremental counter machine) 56
A.2.4Definition (Incremental counter languages) 56

List of theorems xi

A.2.5Definition (Stateless counter machine) . 56
A.2.6Definition (Stateless counter languages) 56
A.3.1Theorem (Weakness of SCL) . 56
A.3.2Theorem (Generality of ICL) . 57
A.3.3Theorem (Generality of Q̃CL) . 59
A.4.1Theorem (General set operation closure) 60

B.0.1 Definition (Linearly separable expression) 63
B.1.1 Theorem (Conjunction) . 63
B.1.2 Theorem (Negation) . 64
B.1.3 Theorem (Disjunction) . 64
B.1.4 Theorem (Disjunction and conjunction) 64

Chapter 1

Introduction

1.1 Background

In recent years, neural networks have achieved tremendous success on a variety of natural
language processing (NLP) tasks. Neural networks employ continuous distributed representa-
tions of linguistic data, which contrast with classical discrete methods. For example, Mikolov
et al. [19] developed word2vec, a neural network method for building vectors that effectively
encode the meanings of words. This contrasts with classical approaches that represent lexical
semantics as discrete expressions in the lambda calculus.

While neural methods work well, one of the downsides of the distributed representations
that they utilize is interpretability. It is hard to tell what kinds of computation a model is
capable of, and when a model is working, it is hard to tell what it is doing.

This work aims to address such issues of interpretability by relating sequential neural
networks to forms of computation that are more well understood. In theoretical computer sci-
ence, the computational capacities of many different kinds of automata formalisms are clearly
established. Moreover, the Chomsky hierarchy links natural language to such automata-
theoretic languages [4]. Thus, relating neural networks to automata both yields insight
into what general forms of computation such models can perform, as well as how such
computation relates to natural language grammar.

Recent work has begun to investigate what kinds of automata-theoretic computations
various types of neural networks can simulate. Weiss et al. [27] propose a connection between
long short-term memory networks (LSTMs) and counter automata. They show how an LSTM
can simulate a simplified variant of a counter automaton, and then demonstrate that LSTMs
can more naturally implement counting in practice. Peng et al. [21], on the other hand,
describe a connection between the gating mechanisms of several recurrent neural network
(RNN) architectures and weighted finite-state acceptors (WFSAs).

2 Introduction

This paper follows Weiss et al. [27] by analyzing the expressiveness of neural network
acceptors that are asymptotically stable. We formalize asymptotic language acceptance, as
well as an associated notion of network memory. We use this theory to derive computation
upper bounds and automata-theoretic characterizations for several different kinds of recurrent
neural networks (Chapter 2), as well as other architectural variants like attention (Section 3.2)
and convolutional networks (CNNs) (Section 3.1). This leads to a fairly complete automata-
theoretic characterization of sequential neural networks.

I report empirical results in Chapter 4. In some cases, networks behave according to
the theoretical predictions, but I also find cases where there is gap between the asymptotic
characterization and actual network behavior.

Still, discretizing neural networks using an asymptotic analysis builds intuition about
how the network computes. Thus, this work provides insight about the types of computations
that sequential neural networks can perform through the lens of formal language theory. In
so doing, we can also compare the notions of grammar expressible by neural networks to the
computational mechanisms underlying natural language.

1.2 Introducing the asymptotic analysis

To investigate the capacities of different neural network architectures, we need to first
define what it means for a neural network to accept a language. It is important to get this
definition right. With unbounded computation time and arbitrary real-valued precision, even
a simple recurrent network (SRN) becomes Turing complete [25]. Thus, we want to impose
the following constraints on neural network computation, which is more realistic to how
networks are trained in practice [27]:

1. Real-time: The network performs one step of computation per input.

2. Bounded precision: The value of each unit in the network is representable by O(logn)
bits.

Informally, a neural sequence acceptor is a network which reads a variable-length
sequence of characters and returns the probability that the input sequence is a valid sentence
in some formal language. More precisely, we can write:

Definition 1.2.1 (Neural sequence acceptor). Let Xn×l be a matrix representation of an
n-length sentence where each row xt is a one-hot vector over an alphabet Σ with cardinality l.
A neural sequence acceptor 1̂ is a family of functions parameterized by weights θ . For each

1.2 Introducing the asymptotic analysis 3

Fig. 1.1 With sigmoid activations, the network on the left accepts a sequence of bits if and
only if xt = 1 for some t. On the right is the discrete computation graph that the network
approaches asymptotically.

θ and n, the function 1̂θ takes the form

1̂
θ : X 7→ p ∈ (0,1).

In this definition, 1̂ corresponds to a general architecture like an LSTM, whereas 1̂θ rep-
resents a specific network, such as an LSTM with weights that have been learned from
data.

In order to get an acceptance decision from this kind of network, we will consider
what happens as the magnitude of its parameters gets very large. Under these asymptotic
conditions, the internal connections of the network approach a discrete computation graph,
and the probabilistic output approaches the indicator function of some language. Figure 1.1
illustrates how taking this limit discretizes the network. I formalize this idea as asymptotic
acceptance:

Definition 1.2.2 (Asymptotic acceptance). Let L be a language with indicator function 1L.
A neural sequence acceptor 1̂ with weights θ asymptotically accepts L if

lim
N→∞

1̂
Nθ = 1L.

Note that the limit of 1̂Nθ represents the function which 1̂Nθ converges to pointwise.1

1https://en.wikipedia.org/wiki/Pointwise_convergence.

https://en.wikipedia.org/wiki/Pointwise_convergence

4 Introduction

Discretizing the network in this way lets us analyze it as an automaton. We can also
view this discretization as a way of bounding the precision that each unit in the network can
encode, since it is forced to act as a discrete unit instead of a continuous value. This prevents
complex fractal representations that rely on infinite precision. We will see later that, for every
architecture considered, this definition ensures that the value of every unit in the network is
representable in O(logn) bits on sequences of length n.

It is important to note that real neural networks can learn strategies not allowed by
the asymptotic definition. Thus, this way of analyzing neural networks is not completely
faithful to their practical usage. In Chapter 4, we discuss empirical studies investigating
how trained networks compare to the asymptotic predictions. While we find evidence of
networks learning behavior that is not asymptotically stable, adding noise to the network
during training seems to make it more difficult for the network to learn non-asymptotic
strategies.

Consider a neural network that asymptotically accepts some language. For any given
length, we can pick weights for the network such that it will correctly decide strings shorter
than that length (Theorem 1.2.1).

Theorem 1.2.1 (Arbitary approximation). Let 1̂ be a neural sequence acceptor for L. For
all m, there exist parameters θm such that, for all strings x1, ..,xn with n < m,[

1̂
θm(X)

]
= 1L(X).

Proof. Consider a string X. By the definition of asymptotic acceptance, we can pick MX

such that, for all N ≥ MX, ∣∣∣1̂Nθ (X)−1L(X)
∣∣∣< 1

2
, (1.1)

which means that [
1̂

Nθ (X)
]
= 1L(X). (1.2)

Now, observe that the set of all strings X with length less than m will always be finite. This
means we can pick θm just by taking

θm = max
X

MXθ . (1.3)

1.2 Introducing the asymptotic analysis 5

1.2.1 State complexity

Analyzing a network’s asymptotic behavior also gives us a notion of the network’s memory.
Weiss et al. [27] illustrate how the LSTM’s additive cell update gives it more effective memory
than the squashed state of an SRN or GRU for solving counting tasks. We generalize this
concept of memory capacity as state complexity. Informally, the state complexity of a node
within a network represents the number of values that the node can achieve asymptotically
as a function of the sequence length n. For example, the LSTM cell state will have O(nk)

state complexity (Theorem 2.2.1), whereas the state of other recurrent networks has O(1)
(Theorem 2.1.1).

State complexity applies to a hidden state sequence, which we can define as follows:

Definition 1.2.3 (Hidden state). A k-length hidden state matrix H is a family of functions
parameterized by weights θ . For each θ , the function Hθ takes the form

Hθ : Xn×l 7→ Vn×k. (1.4)

We write hθ
t to mean the t-th row of Hθ . That is, for each θ and 1 ≤ t ≤ n, hθ

t is a function

hθ
t : X 7→ vt ∈ Rk. (1.5)

Often, a sequence acceptor can be written as a function of an intermediate hidden state.
For example, the activations of the recurrent layer act as a hidden state in an LSTM language
acceptor. In recurrent architectures, the value of the hidden state is a function of the preceding
prefix of characters, but with convolution or attention, it can depend on characters occuring
after index t.

The state complexity is defined as the cardinality of the configuration set of such a hidden
state:

Definition 1.2.4 (Configuration set). Let El denote the set of l-length one-hot vectors. For
all n, the configuration set of a hidden state hn with weights θ is given by

M(hθ
n) =

{
lim

N→∞
hNθ

n (X) | x1, ..,xn ∈ El

}
.

Definition 1.2.5 (Fixed state complexity). For a hidden state hn with weights θ , the fixed
state complexity with respect to θ is given by

m(hθ
n) =

∣∣∣M(hθ
n)
∣∣∣.

6 Introduction

Definition 1.2.6 (General state complexity). The state complexity of hidden state hn is

m(hn) = max
θ

m(hθ
n).

To illustrate these definitions, consider a simplified recurrent mechanism based on the
LSTM cell. The architecture is parameterized by a vector θ ∈ R2. At each time step, the
network reads a bit xt and computes

ft = σ(θ1xt) (1.6)

it = σ(θ2xt) (1.7)

ht = ftht−1 + it . (1.8)

When we set θ+ = ⟨1,1⟩, ht asymptotically computes the sum of the preceding inputs.
Because this sum can evaluate to any integer between 0 and n, hθ+

n has a fixed state complexity
of

m

(
hθ+

n

)
= O(n). (1.9)

However, when we use parameters θ Id = ⟨0,1⟩, we get a reduced network where ht = xt

asymptotically. Thus,

m

(
hθ Id

n

)
= O(1). (1.10)

Finally, the general state complexity is the maximum fixed complexity, which is O(n).
For any neural network hidden state, the state complexity is at most 2O(n) (Theorem 1.2.2).

This means that the value of the hidden unit can be encoded in O(n) bits.

Theorem 1.2.2 (General bound on state complexity). Let hn be a neural network hidden
state. For any length n, it holds that

m(hn) = 2O(n).

Proof. The number of configurations of hn cannot be more than the number of distinct inputs
to the network. By construction, each xt is a one-hot vector over the alphabet Σ. Thus, the
state complexity is bounded according to

m(hn)≤ |Σ|n = 2O(n).

1.2 Introducing the asymptotic analysis 7

Moreover, for every specific architecture considered, I observe that each fixed-length
state vector has at most O(nk) state complexity, or, equivalently, can be represented in
O(logn) bits. Architectures that utilize exponential state complexity, such as the transformer,
do so by using a variable-length hidden state. State complexity generalizes naturally to a
variable-length hidden state, with the only difference being that H (1.4) becomes a sequence
of variably sized objects.

Now, we will consider what classes of languages different neural networks can accept
asymptotically. State complexity will also prove useful for analyzing the computational
capacities of different architectures. The theory that emerges from these tools enables better
understanding of the computational processes underlying neural sequence models.

Chapter 2

Recurrent neural networks

In this chapter, I consider the relationship between automata and three kinds of recurrent
neural networks (RNNs). As already mentioned, RNNs are Turing-complete [25] under an
unconstrained definition of acceptance. This classical reduction relies on two very strong
assumptions about RNN computation [27]. First, the number of recurrent computations must
be unbounded in the length of the input, whereas, in practice, RNNs are almost always trained
in a real-time fashion. Second, it relies heavily on infinite precision of the network’s logits.
Restricting computation to be real-time and have bounded precision severely constrains the
class of formal languages that an RNN can accept. Thus, it is not unreasonable to ask whether
a real-time, bounded precision RNN has the capacity to accept a certain language.

I will introduce the SRN, GRU, and LSTM and reason about what kind of automata
computations they can perform. This will allow me to derive upper and lower bounds on the
types of languages they can accept.

2.1 SRNs

The SRN, or Elman network, is the simplest type of recurrent neural network. We make the
hidden layer recurrent by simply including the output at the previous time step in a standard
affine transformation [6]. This can be written as

ht = tanh(Wxt +Uht−1 +b). (2.1)

A well-known problem with SRNs is that they struggle with long-distance dependencies.
One explanation of this is the vanishing gradient problem, which motivated the development
of more sophisticated architectures like LSTMs [12]. Intuitively, another shortcoming of
SRNs is that, in some sense, they have less state than an LSTM. This is because, while both

10 Recurrent neural networks

architectures have a fixed number of hidden units, the SRN units remain between 0 and 1,
whereas the value of each LSTM cell can grow unboundedly [27]. The notion of asymptotic
acceptance allows us to formalize this intuition. In particular, it turns out that an SRN only
has a finite number of asymptotic configurations:

Theorem 2.1.1 (SRN state complexity). For any length n, the SRN cell state hn ∈ Rk has
state complexity

m(hn)≤ 2k = O(1).

Corollary 2.1.1.1. Let L(SRN) denote the languages acceptable by an SRN, and RL the
regular languages. Then,

L(SRN)⊆ RL.

Proof. For every t, each unit of ht will be the output of a tanh. In the limit, it can achieve
either −1 or 1. Thus, for the full vector, the number of configurations is bounded by 2k.

We can also show the other direction of containment, which yields the following result:

Theorem 2.1.2 (SRN characterization).

L(SRN) = RL.

Proof. We already know that any SRN-acceptable language is regular. Now we will show
that any language acceptable by a finite-state machine is SRN-acceptable. To do this, we
need to asymptotically compute a representation of the machine’s state in ht . I will do this
by storing the value of the following predicate at each time step:

ðt(i,α) ⇐⇒ qt−1(i)∧ xt = α (2.2)

where qt(i) is true if the machine is in state qi at time t. Assuming ht asymptotically
computes ðt , we can compute an acceptance decision in the final layer according to the
linearly separable formula (B.1.3) given by

at ⇐⇒
∨
i∈F

∨
⟨ j,α⟩∈δ−1(i)

ðt(j,α). (2.3)

Now, all that remains to be shown is how to compute ðt at each time step. By rewriting
qt−1 in terms of the previous ðt−1 values, we can get the following recurrence:

ðt(i,α) ⇐⇒ xt = α ∧
∨

⟨i,α⟩∈δ−1(i)

ðt(i,α). (2.4)

2.2 LSTMs 11

Since this formula is linearly separable in xt∥ðt−1 (B.1.4), we can compute it in a single
neural network layer from xt and ht−1. Now, we just need to worry about the base case: in
other words, we need to ensure that transitions out of the initial state work out correctly at
the first time step. We can do this by adding a new memory unit ft to ht which is always
rewritten to have value 1. Thus, if ft−1 = 0, we can be sure we are in the initial time step.
For each transition out of the initial state q0, we add ft−1 = 0 as an additional term in the
disjunction to get

ðt(0,α) ⇐⇒ xt = α ∧
(

ft−1 = 0∨
∨

⟨i,α⟩∈δ−1(0)

ðt(i,α)
)
. (2.5)

This equation is still linearly separable (B.1.4) and guarantees that the initial step will be
computed correctly.

Thus, we find that SRN-acceptable languages are equivalent to the regular languages.
This is quite a diminished characterization compared to their Turing completeness under an
unrestricted definition of acceptance [25]. We will see that LSTMs, on the other hand, are
strictly more powerful than the regular languages.

2.2 LSTMs

An LSTM is a recurrent neural network with a complex gating mechanism that determines
how information from one time step is passed to the next. Originally, this gating mechanism
was designed to remedy the vanishing gradient problem in simple recurrent networks, or,
equivalently, to make it easier for the network to remember long-term dependencies [12].
Due to strong empirical performance on many language tasks, LSTMs have become the
canonical model for NLP.

Interestingly, Weiss et al. [27] suggest that another way to understand the success of the
LSTM architecture is that they are expressive enough to accept simplified counter languages.
They point out that this constitutes a real difference between the LSTM and the GRU, whose
update equations do not allow it to operate as a counter machine.

I am to further investigate the connection between counter machines and LSTMs. In
particular, I will derive upper bounds on what kinds of computation LSTMs can perform.
Together with Weiss et al. [27]’s arguments, this suggests that the generative capacity of
LSTMs is essentially equivalent to some subclass of the counter languages.

To start, I will introduce the recurrent update equations for the LSTM:

12 Recurrent neural networks

Definition 2.2.1 (LSTM layer).

it = σ(Wixt +Uiht−1 +bi) (2.6)

ft = σ(W f xt +U f ht−1 +b f) (2.7)

ot = σ(Woxt +Uoht−1 +bo) (2.8)

c̃t = tanh(Wcxt +Ucht−1 +bc) (2.9)

ct = it ⊙ ct−1 + ft ⊙ c̃t (2.10)

ht = ot ⊙ f (ct). (2.11)

In the last equation, we can let f be either the identity or tanh [27], although tanh is more
standard in practice. The vector ht is the output that is received by the next layer, and ct is
an unexposed memory vector that I will refer to as the cell state. Both of these vectors are
copied and fed into the layer computation at the next time step.

Theorem 2.2.1 (LSTM state complexity). The LSTM cell state cn ∈ Rk has state complexity

m(cn) = O(nk).

Proof. At each time step t, we know that the configuration sets of it , ft , and ot are each
subsets of {0,1}k. Similarly, the configuration set of c̃t is a subset of {−1,1}k. This allows
us to rewrite the elementwise recurrent update as

lim
N→∞

[ct]i = lim
N→∞

[it]i[ct]i +[ft]i[c̃t]i (2.12)

= lim
N→∞

a[ct]i +b (2.13)

where a ∈ {0,1} and b ∈ {−1,0,1}.
Let St be the set of values that [ct]i can achieve. Observe that, at each time step, two new

values appear in St that were not in St−1: min(St−1)−1 and max(St−1)+1. It follows that

|St |= 2+ |St−1| (2.14)

=⇒ |Sn|= O(n). (2.15)

Therefore, for all k units of the cell state, we have

m(cn)≤ |Sn|k = O(nk). (2.16)

2.3 GRUs 13

Additionally, analyzing the asymptotic configurations of an LSTM allows us to derive an
upper bound on its expressive power:

Theorem 2.2.2 (LSTM upper bound). Let CL be the counter languages (A.1.6). Then,

L(LSTM)⊆ CL.

Proof. The machine that we construct in Theorem 2.2.1 takes the form of a general counter
machine whose counter and state update functions are constrained to be linearly separable.
This implies that any LSTM-acceptable language is acceptable by a general counter machine.

Theorem 2.2.2 constitutes a very tight upper bound on the expressiveness of LSTM
computation. Asymptotically, LSTMs are not powerful enough to model even simple context-
free languages like w#wR.

Weiss et al. [27] show how the LSTM can simulate a simplified variant of the counter
machine. Combining these results, we see that the asymptotic expressiveness of the LSTM
falls somewhere between the general and simplified counter languages. This suggests
counting is a good way to understand the dynamics of an LSTM cell.

2.3 GRUs

The GRU is a popular gated recurrent neural network architecture that is in many ways
similar to the LSTM [3]. Rather than having both an include and forget gate, the GRU
utilizes a single gate which, along with its complement, modulates both the ability to include
and to forget:

Definition 2.3.1 (GRU layer).

zt = σ(Wzxt +Uzht−1 +bz) (2.17)

rt = σ(Wrxt +Urht−1 +br) (2.18)

ut = tanh
(
Wuxt +Uu(rt ⊙ht−1)+bu) (2.19)

ht = zt ⊙ht−1 +(1− zt)⊙ut . (2.20)

Weiss et al. [27] show empirically and analytically how this architectural difference
prevents a GRU from similating a counter machine like an LSTM can. Similarly, my theory
predicts that the GRU has strictly less state complexity than the LSTM:

14 Recurrent neural networks

Theorem 2.3.1 (GRU state complexity). The hidden state of a GRU has a state complexity of

m(hn) = O(1).

Proof. Similarly to the LSTM, zt approaches a vector in {0,1}k. Thus, we have two possi-
bilities for each value of [ht]i: either [ht−1]i or [ut]i. Let St be the set of values that [ht−1]i

can attain. We can write

St = St−1 ∪{−1,1}. (2.21)

This implies that there are only three possible values for each logit: −1, 0, or 1. Thus, the
number of state configurations of hn is

m(hn)≤ 3k = O(1). (2.22)

Building on this result, we can show that the class of GRU-acceptable languages is
exactly the regular languages:

Theorem 2.3.2 (GRU characterization).

L(GRU) = RL.

Proof. By Theorem 2.3.1, the regular languages are an upper bound on the generative
capacity of GRUs. On the other hand, I will demonstrate that any regular language is
acceptable by some GRU. This implies that the classes are equivalent.

We can simulate a finite-state machine using an ð construction similar to the one in
Theorem 2.1.2. For more detail, refer to that proof. I start by defining

ðt(i,α) ⇐⇒ qt−1(i)∧ xt = α. (2.23)

In the recurrent case, we can rewrite this recursively in terms of ðt−1:

ðt(i,α) ⇐⇒ xt = α ∧
∨

⟨ j,β ⟩∈δ−1(i)

ðt−1(j,β). (2.24)

This formula is linearly separable in xt∥ðt−1 (B.1.4). Therefore, we can store ðt in our hidden
state ht and recurrently compute its update. The base case can be handled similarly to in
Theorem 2.1.2. Then, in a final feedforward layer, we can compute whether we are in an
accepting state from the value of ðt :

2.4 Summary 15

at ⇐⇒
∨
i∈F

∨
⟨ j,β ,⟩∈δ−1(i)

ðt(j,β). (2.25)

This gives us a way to simulate any finite-state machine.

2.4 Summary

Synthesizing all of these results, we get the following complexity hierarchy:

RL = L(SRN) = L(GRU) (2.26)

⊂ SCL ⊆ L(LSTM)⊆ CL. (2.27)

Basic recurrent architectures have finite state, whereas the LSTM is strictly more powerful
than a finite-state machine.

Chapter 3

Other neural sequence models

While recurrent networks are very well established within the field of NLP, it is also possible
to use other architectures for sequence modeling and transduction tasks, such as convolutional
networks and transformers [26]. Convolutional networks tend to be used for the specific
task of modeling subword information, whereas transformers, although originally developed
for machine translation [26], have been applied to a variety of tasks. Using the asymptotic
analysis developed in Section 1.2, we can also reason about what kinds of computation these
models are capable of.

3.1 Convolutional networks

While convolutional networks were originally developed with other purposes in mind [15],
they can be use to process variable-length sequences. One popular application of this is to
build character-level representations of words [14]. Another example of this is the capsule
network architecture of Zhao et al. [30], which utilizes a convolutional layer as an initial
feature extractor over a word-level sequence. Thus, we can ask about what kinds of formal
languages convolutional networks can accept.

For recurrent networks, we defined output at the last time step as an acceptance decision
for the whole sequence. This approach is problematic for convolutional networks because,
due to the lack of recurrent connections, it would ignore all computation besides the last time
step. Therefore, we should redefine our acceptance criterion.

There are a variety of ways by which we can reduce our vector of convolutional output to
a scalar acceptance value. Treating the values as fuzzy bits, we could take a logical operation
like AND or OR. Another possibility is to take a majority vote between bits, or add a simple
one-bit RNN. A more realistic approach is to use max-over-time pooling [14] to collapse away
the time dimension, and then use a final layer to produce an acceptance decision. Because

18 Other neural sequence models

this resembles practically viable models, I choose to adopt it. The following architecture is
based off of Kim et al. [14]:

Definition 3.1.1 (CNN acceptor).

ht = tanh
(
Wh(xt−k∥..∥xt+k)+bh) (3.1)

h+ = maxpool(H) (3.2)

a = σ(Wah++ba). (3.3)

In this model, the initial k-convolutional layer (3.1) produces a vector-valued sequence of
outputs. Then, we collapse the time series of representations to a summary for the whole
sequence by taking the maximum value of each filter over all the time steps (3.2). Once
we have this representation, we add a single feedforward layer to produce an acceptance
decision (3.3).

This convolutional architecture is substantially computationally weaker than an LSTM.
Right away, we can see that L(CNN)⊆ RL. This is because the state vectors ht must have
finite state. In fact, it turns out that there are simple regular languages that are provably
beyond the capacity of a convolutional neural network. Thus, the subset relation is strict.

Theorem 3.1.1 (CNN upper bound).

L(CNN)⊂ RL.

Proof. By contradiction. Consider the language a∗ba∗. Assume we can write a network with
window size k that accepts any string with exactly one b and reject any other string. Consider
a string with two bs at indices i and j where j− i > 2k+1. Then, there are no columns in
the network which receive both xi and x j as input. Observe that the value of h+ determines
whether the network accepts. When we replace one b with an a, the value of h+ remains
the same after pooling, but we get a string with exactly one b. This means that the network
should accept, which is a contradiction.

Thus, to arrive at a characterization of what convolutional sequence acceptors can do, we
should move to subregular classes of languages. In particular, we will consider the strictly
local languages [23], which can be defined as follows:

Definition 3.1.2 (Strictly k-local grammar). A strictly k-local grammar over an alphabet Σ is
a set of constraints S where each s ∈ S takes the form

s ∈
(
Σ∪{#}

)k

3.1 Convolutional networks 19

where # is a padding symbol for the start and end of sentences.

Definition 3.1.3 (Strictly local acceptance). A strictly k-local grammar S accepts a string σ

if, at each index i,

σiσi+1..σi+k−1 ∈ S.

Definition 3.1.4 (SLk). SLk is the set of all languages acceptable by a strictly k-local gram-
mar.

The SLk hierarchy is inherently related to the types of computation that a convolutional
sequence acceptor can perform. In particular, we can state this as follows:

Theorem 3.1.2 (Strictly local CNNs). A k-convolutional network can asymptotically accept
any strictly 2k+1-local language.

Corollary 3.1.2.1 (CNN lower bound).

SL ⊆ L(CNN).

Proof. In the convolutional layer (3.1), each filter will identify whether a particular invalid
2k+1-gram is matched. This condition is a conjunction of one-hot terms, which means we
can easily construct a transformation that comes out to 1 if a particular invalid sequence was
matched, and −1 otherwise.

Next, the pooling layer (3.2) collapses the filter values at each time step. A pooled filter
will be positive if and only if the invalid sequence it is detecting was matched somewhere in
the sequence.

Finally, we can compute acceptance (3.3) by checking whether any invalid filter was
matched at all. To do this, we sum the filters and use sigmoid as a threshold at −K where K
is the number of invalid sequences. If any filter was matched, then the sum will exceed −K,
and we reject. Otherwise, we accept.

Interestingly, the tier-based strictly local languages have been proposed as a computational
model for natural language phonological grammar [11]. Tier-based strictly local languages
are very similar to strictly local languages, except that the local patterns can target characters
in a specific tier of the vocabulary (e.g., vowels) instead of applying to the full string. In the
field of NLP, convolutional networks have been used to model character-level information
within words [14]. Theorem 3.1.2 provides a theoretical explanation for this: convolutional
networks pick up on strictly local dependencies that are similar to those employed by natural-
language phonology. While a single convolutional layer would be unable to extract tiers from

20 Other neural sequence models

a sentence, it is conceivable that a more complex architecture which stacks convolutional or
recurrent layers could simulate this behavior.

3.2 Attention

Attention is a popular enhancement to sequence-to-sequence (seq2seq) neural networks
[1, 5, 18]. Attention allows a network to recall specific encoder states while trying to produce
output. In the context of machine translation, this mechanism models the alignment between
words in the source and target languages. More recent work has found that “attention is all
you need” [26, 22]. In other words, networks with only attention and no recurrent connections
perform at the state of the art on many tasks.

An attention function can be defined as a mapping from a query vector and a sequence of
paired key-value vectors to a weighted combination of the values. This output is meant to
incorporate the values whose keys are relevant to the query.

Definition 3.2.1 (Dot-product attention). For a query q ∈ Rl , matrix of key vectors K ∈ Rnl ,
and matrix of value vectors V ∈ Rnd , dot-product attention is given by

attn(q,K,V) = softmax(qKT)V.

Softmax creates a vector of similarities between the query q and each key vector in
K. The output vector is a sum of the value vectors in V weighted by the similarity of the
corresponding keys to the query. In practice, the dot product qKT is often scaled by the
square root of the length of the query vector [26]. However, this is only done to improve
optimization and has no effect on expressiveness. Therefore, we consider the unscaled
version.

In the asymptotic case, attention reduces to a weighted average of the values whose keys
maximally resemble the query. This can be viewed as an argmax operation:

Theorem 3.2.1 (Asymptotic attention). Let t1, .., tm be the subsequence of time steps that
maximize qkt . 1 Asymptotically, attention computes

lim
N→∞

attn(q(N) ,K,V) =
1
m

m

∑
i=1

lim
N→∞

(vti) .

1To be precise, we can define a maximum over the similarity scores according to the order given by

f > g ⇐⇒ lim
N→∞

f (N)

g(N)
> 1. (3.4)

3.2 Attention 21

Corollary 3.2.1.1 (Asymptotic attention with unique maximum). If f : vt 7→ qkt has a unique
maximum, then attention asymptotically computes

lim
N→∞

attn(q(N) ,K,V) = lim
N→∞

argmax
vt

qkt .

Proof. Observe that, asymptotically, softmax(u) approaches a function

lim
N→∞

softmax(Nu)t =

 1
m if ut = max(u)

0 otherwise,
(3.5)

where m is the number of indices t that maximize ut . Thus, the output of an attention
mechanism reduces to the sum

m

∑
i=1

1
m

lim
N→∞

(vti) . (3.6)

Attention mechanisms were originally used in sequence-to-sequence (seq2seq) networks
as a way of modeling alignment in the context of machine translation [1]. At each time
step, the decoder attends over the output of the encoder to produce a vector. Because I
am concerned with language acceptance instead of sequence transduction, I will consider
a variant of the seq2seq architecture that produces an output sequence of length 1. We can
define such a model as follows:

Definition 3.2.2 (Attention layer). Consider an encoder network which produces a sequence
of vectors v1, ..,vn where the union of the asymptotic configuration sets for each vt is finite.
We attend over the encoded sequence by computing

qt = Wqvt (3.7)

ht = attn(qt ,Vt ,Vt). (3.8)

In this model, hn represents a summary of the relevant information in the prefix v1, ..,vn. The
query that is used to attend is a simple linear transformation of the final encoder state.

In addition to modeling alignment, another advantage of adding an attention mechanism
to a recurrent network is that it introduces additional memory to a bounded-state model. The
polynomial state complexity of the LSTM architecture means that it is impossible for LSTMs
to copy or reverse arbitrary strings. Therefore, the additional memory provided by attention
is essential for sequence transductions tasks like machine translation (2.2.1). To formalize

22 Other neural sequence models

this intuition, we can show that attending over a sequence of encoded vectors gives a model
an exponential number of possible states.

Theorem 3.2.2 (Encoder state complexity).

m(Vn) = 2Θ(n).

Proof. By the general upper bound on state complexity (1.2.2), we know that m(Vn) =

2O(n). So, we just need to show the lower bound. This follows straightforwardly: first, we
pick weights θ in the encoder such that there are two possible outputs at each vt , and the
computation at each time step is independent. Thus, m(vθ

t) = 2 for all t. Since the values at
each time step are independent, we can write

m(Vθ
n) =m(v

θ
1) · .. ·m(vθ

n) = 2n, (3.9)

and in general

m(Vn) = 2Ω(n). (3.10)

So, by converting the state of the model to a sequence of vectors Vn instead of a single
vector vn, attention gives a model exponential state complexity. A natural follow-up question
is whether this additional complexity is preserved in the attention vector hn. Attending over
Vn does not preserve exponential state complexity. Instead, we get an O(n2)-state summary
of Vn:

Lemma 3.2.2.1 (Attention state complexity). The attention summary vector has state com-
plexity

m(hn) = O(n2).

Proof. By Theorem 3.2.1, we know that

lim
N→∞

hn =
1
m

m

∑
i=1

lim
N→∞

(vti) . (3.11)

Now, let’s consider how many configurations hn can achieve. By construction, there is a
finite set S containing all possible configurations of each vt . When we compute the mean
of these values to get hn, the relative order of the values does not matter. All that matters is
the number of times each distinct element of S occurs. This observation lets us bound the

3.2 Attention 23

number of configurations of hn by

n

∑
m=1

|S|m ≤ |S|n2 = O(n2). (3.12)

With minimal assumptions, we can show a more restrictive bound: namely, that the
complexity of the attention vector comes out to be finite.

Theorem 3.2.3 (Attention state complexity with unique maximum). If f : vt 7→ qnkt has a
unique maximum, then

m(hn) = O(1).

Proof. If qnkt has a unique maximum, then attention returns the vt which maximizes qnkt

(3.2.1.1). By construction, there is a finite set S which contains all the values that any vt can
achieve. Thus, the vt which is returned by attention has

m(hn)≤ |S|= O(1). (3.13)

Theorem 3.2.4 (Attention state complexity with ReLU activations). If each limN→∞ vt ∈
{0,∞}k, then

m(hn) = O(1).

Proof. By Theorem 3.2.1, we know that attention computes

lim
N→∞

hn =
1
m

m

∑
i=1

lim
N→∞

(vti) . (3.14)

This sum evaluates to a vector in {0,∞}k, which means that

m(hn)≤ 2k = O(1). (3.15)

Theorem 3.2.4 applies if the sequence v1, ..,vn is computed as the output of a ReLU. A
similar result holds if it is computed as the output of an unsquashed linear transformation.

24 Other neural sequence models

3.3 Transformers

Transformers are a new sequence model designed around the concept of neural attention
[22, 26]. Due to their inherent uninterpretability and strong performance, analyzing the
power of transformers is an interesting question. The general results about attention from
Section 3.2 will prove useful for doing this.

The transformer architecture developed by Vaswani et al. [26] is motivated by the claim
that "attention is all you need". In other words, their model replaces the recurrent connections
of a classical seq2seq encoder with self-attention [24]. At each time step, a self-attention
layer predicts a key, query, and value. The output of the layer at time n is computed by
attending with query qn over the keys and values at all other time steps. The transformer
architecture utilizes several different instantiations of self-attention heads in parallel, and
then concatenates the outputted vectors. This multihead self-attention allows the network to
search for different features over different parts of the sequence:

Definition 3.3.1 (Multihead self-attention). Given a raw query q′, raw keys K′, and raw
values V′, multihead attention is given by

ai = attn(Wqiq′,WViK′,WViV′) (3.16)

multihead(q′,K′,V′) = a1∥..∥ad. (3.17)

The network proposed by Vaswani et al. [26] uses an encoder with multihead self-attention
and a self-attention decoder that also attends over the output of the encoder. Further work
has also developed a simplified architecture with a self-attention encoder and a feedforward
decoder [17, 22]. Radford et al. [22] use this simplified transformer architecture for joint
training of language modeling and text classification tasks. Due to the similarity of language
modeling to language acceptance, I will use the variant of Radford et al. [22].

Definition 3.3.2 (Transformer layer).

q′
t∥k′

t∥v′t = Wxxt (3.18)

ht = σ
(
Whmultihead(q′

t ,K
′
t ,V

′
t)
)
. (3.19)

One key difference between this model and the model of Radford et al. [22] is that the
multihead attention here is not masked. This is because unmasked attention trivially solves
the language modeling task, whereas it does not solve language acceptance. Therefore, I do
not make this additional restriction.

Because of the presence of attention (3.2.2), the transformer state has complexity

3.4 Stack recurrent networks 25

m(Vn) = 2Θ(n). (3.20)

Similarly, because each limN→∞ vt ∈ {−∞,0,∞}k, we know that, analogously to Theo-
rem 3.2.4,

m(hn) = O(1). (3.21)

Despite the transformer’s exponential state complexity, it cannot accept every language
acceptable by an LSTM. It has been documented that transformers have difficulty learning
positional dependencies without the augmentation of special positional encodings [26]. In the
asymptotic case, Vaswani et al. [26]’s positional encodings fail because they rely on periodic
functions which will eventually repeat for long enough strings. The positional invariance of
the transformer motivates the following proof:

Theorem 3.3.1 (Relation to regular languages).

RL ⊈ L(Trans).

Proof. By contradiction. Consider the language ab∗. Assume we can accept a string
x = abn−1 for some n. We can swap the positions of a and some arbitrary b to produce a
string y on which the state of hn will be unchanged. Then, we will accept y /∈ L, which is a
contradiction.

3.4 Stack recurrent networks

One way to make an RNN closer to a context-free grammar is to construct a differentiable
pushdown automaton [9, 10]. This is done by defining a stack data structure that is differen-
tiable, and then training a controller network that manipulates the stack as well as producing
output. Because the vectors popped from the stack are differentiable with respect to the
sequence of vectors that have been pushed onto it, we can use back-propagation to compute
all the partial derivatives in the network’s computation graph.

The technical details of the differentiable stack architecture are quite complicated. At a
high level, the stack implements an interface

⟨vt ,ut ,dt⟩ 7→ rt , (3.22)

where:

26 Other neural sequence models

1. vt+1 ∈ Rk is a vector to be pushed onto the stack matrix St ∈ Rtk

2. ut+1 ∈ (0,1) is the amount of mass that should be popped from the top of St

3. dt+1 ∈ (0,1) is the weight with which v should be added to the top of the stack

4. rt+1 ∈ Rk is a vector summary for the top of the new stack St+1

The controller network receives rt−1 and xt as input and predicts vt , ut , and dt , which are
then used to manipulate the stack. Refer to Hao et al. [10] for a more detailed introduction.

Hao et al. [10] show how a stack RNN can effectively solve a variety of formal language
tasks. Additionally, the structured memory mechanism allows for interpretability of the
algorithm that a stack RNN is learning [10]. Yogatama et al. [29] use a multipop variant
of the same neural stack architecture to achieve state-of-the-art performance on language
modeling. It is an open question what other tasks stack neural networks can prove practically
viable for. To facilitate further work on this question, I have released a public PyTorch [20]
implementation of the stack neural network architecture.2

We can abstract away from the specifics of the stack implementation while trying to
analyze its computational power. In particular, I will derive its state complexity by considering
a simple controller that only ever pushes to its stack. We’ll see that, even in this simple case,
the stack’s state complexity exceeds that of an LSTM. The reasoning here is similar to the
argument I presented for attention mechanisms (3.2.2).

Theorem 3.4.1 (Neural stack state complexity). Let Sn ∈ Rnk be a neural stack with a
feedforward controller. Then,

m(Sn) = 2Θ(n).

Proof. By the general state complexity bound (1.2.2), we know that m(Sn) = 2O(n). Thus,
we just need to show that m(Sn) = 2Ω(n). The stack at time step n is a matrix Sn ∈Rnk where
each row corresponds to a vector that has been pushed on at each time step. Consider the
subset of configurations that we reach by only pushing. Since the vector that is pushed onto
the stack at time t is a function of xt only, it has some finite number of configurations greater
than 1. Thus, for all n rows of the matrix, the number of configurations will be 2Ω(n).

This result show how stack neural networks have representational power beyond that
of LSTMs. However, it should be noted that this increased representational power is not
necessarily a good thing: perhaps it makes learning more difficult.

2https://github.com/viking-sudo-rm/StackNN.

https://github.com/viking-sudo-rm/StackNN

3.5 Summary 27

3.5 Summary

A one-layer convolutional network is strictly less powerful than the regular languages,
and thus also strictly less powerful than all the variants of RNNs. We saw however, that
these networks are powerful enough to model strictly local patterns like those occurring in
natural-language phonology, which suggests that they have a level of expressiveness that is
well-suited for building character-level representations.

Under the asymptotic analysis, attention, transformers, and the differentiable stack data
structure all have a state complexity beyond that of RNNs. In the case of attention, the
sequence of values that is attended over introduces exponential state complexity into the
model, but the complexity of the summary vector produced by attending over such a sequence
is finite.

The exponential state complexity provided by attention enables copying, which we can
view as a simplified version of machine translation. Thus, it makes sense that attention is
almost universal in machine translation architectures. The additional memory introduced by
attention might allow more complex hierarchical representations.

Chapter 4

Empirical results

We compare our theoretical characterizations for asymptotic networks to the empirical
performance of trained neural networks with continuous logits.

4.1 Counting

The goal of this experiment is to evaluate which architectures have memory beyond finite
state.1 We train a language model on anbnc and test it on long strings (2000 ≤ n < 2200).
Predicting the c character correctly while maintaining good overall accuracy requires O(n)
states.

In Table 4.1, all recurrent models find a generalizable solution to this task with only two
hidden units. This suggests that the SRN and GRU have at least O(n) state even though
asymptotically they are finite state.

Weiss et al. [27] observed that LSTMs visibly use their memory as counters on a similar
task, whereas SRNs and GRUs did not learn to count in an obvious way. Despite this, our
results show that SRNs and GRUs are still able to implement generalizable counter memory.
Because the strategy is not asymptotically stable, however, the counter encoding is less
interpretable than with the LSTM.

4.2 Counting with noise

This experiment investigates how adding noise to an RNN’s activations inhibits its ability to
count. For the SRN and GRU, noise is added to ht−1 before computing ht , and for the LSTM,
noise is added to ct−1. In either case, the noise is sampled from the distribution N(0,0.12).

1https://github.com/viking-sudo-rm/nn-automata.

https://github.com/viking-sudo-rm/nn-automata

30 Empirical results

m No Noise Noise
Acc c-Acc Acc c-Acc

SRN O(1) 100.0 100.0 49.9 100.0
GRU O(1) 99.9 100.0 53.9 100.0

LSTM O(nk) 99.9 100.0 99.9 100.0
Table 4.1 Performance of trained language models for anbnc tested on 2000 ≤ n < 2200.
Each model has 2 hidden units.

In Table 4.1, the noisy SRN and GRU fail to count, whereas the noisy LSTM remains
successful. Thus, the asymptotic characterization of each network is realized when a small
amount of noise is introduced. One interpretation of this result is that asymptotic characteri-
zations might be more descriptive of networks trained on noisy natural language data than
they are for networks trained on carefully curated formal languages.

4.3 Reversing

Another important formal language task for assessing network memory is reversing a string.
Reversing requires remembering a Θ(n) prefix of characters, which implies 2Θ(n) state
complexity. Therefore, we investigate which seq2seq networks can learn to reverse.

Fig. 4.1 Accuracy of an LSTM reverse transducer on binary strings with length ∼ N(50,52).

Hao et al. [10] find that an LSTM transducer has trouble reversing strings. On the other
hand, a stack neural network, which has 2Θ(n) state complexity, learns to reverse strings
flawlessly.

We test an LSTM reverse transducer on very long strings in Figure 4.1.2 The accuracy of
every LSTM model is barely above chance, which suggests that the LSTM does not have

2https://github.com/viking-sudo-rm/StackNN/.

https://github.com/viking-sudo-rm/StackNN/

4.3 Reversing 31

enough memory to represent the full prefix. Furthermore, increasing the size of the LSTM
hidden state provides a rapidly decaying performance benefit.

Chapter 5

Rational recurrences

Peng et al. [21] introduce the term "rational recurrence" to describe an RNN recurrent update
that can be computed elementwise by series of weighted finite-state automata (WFSAs).
Recall that, in RNNs, the gate update function is expressed as a recurrence

ct = f (xt ,ct−1). (5.1)

For example, in an SRN [6], the gate update takes the form

ct = tanh(Wxt +Uct−1 +b). (5.2)

If we unroll the computation graph of the network, this recurrence becomes a function of
the variable-length input prefix x1, ..,xt . Thus, we will consider recurrent update function to
be a vector-valued function of the form c : Σ∗ →Kk. This kind of function, which takes a
variable-length sequence as input, is exactly the type of object that can be computed by a
series of WFSAs.

5.1 WFSAs

Formally, a WFSA is a non-deterministic automaton where each transition receives a weight
[21]. This allows us to define a numerical score for any input string. The automaton assumes
a particular semi-ring K with operations ⊗ and ⊕. This allows us to define a score for all
paths through the automaton:

Definition 5.1.1 (Path score). The score of a path π1, ..,πt is given by

A[π] = λ (q1)⊗
(t⊗

i=1

τ(πi)
)
⊗ρ(qt+1).

34 Rational recurrences

Semantically, τ is a function which gives us the score of each transition. Similarly, λ gives
us the score of starting in each state, and ρ gives the score for ending in any state. These
functions generalize the concepts of initial and accepting states. Next, we define the score of
for an input string as the sum of the scores over all possible paths:

Definition 5.1.2 (String score). The score of a string x is given by

A[x] =
⊕

π∈Π(x)

A[π].

We consider the output of a WFSA on a particular string to be the score assigned to the string
by the WFSA. Thus, a sequence of k WFSAs will compute a vector ct ∈Kk.

5.2 Simplified counter machines as rational recurrences

Just like we can write a recurrence relating the hidden states in a recurrent neural network,
we can also write a recurrence relating the update to the counter state in a simplified counter
machine (A.2.2). Interestingly, the gating mechanism which dictates how the counters are
updated turns out to be a rational recurrence.

Theorem 5.2.1 (Rational recurrence of simplified counter machines). A simplified counter
machine is rationally recurrent.

Proof. Let ct be the value of the counters at time t. We will now parameterize the counter
operations as

ct = r(xt)ct−1 +u(xt). (5.3)

This parameterization allows us to express all of the valid update operations. For −1, +0, and
+1, we set r(xt) = 1, and u(xt) to −1, 0, and 1 respectively. For ×0, we set u(xt) = r(xt) = 0.
Next, we can unroll this recurrence in time to get

ct =
t

∑
i=1

(t

∏
j=i+1

r(x j)
)
u(xi). (5.4)

Element i of this vector is computed by a WFSA of the form:

q0start q1

xt : 1

xt : ui(xt)
xt : ri(xt)

5.3 General counter machines 35

Assigning q0 to be the start state means that λ (q0) = 1 and λ (q1) = 0. Similarly, when I say
that q1 is an accepting state, I mean that ρ(q1) = 1 and ρ(q0) = 0.

5.3 General counter machines

Extending this reduction to general counter machines does not seem to work. This is because
the update operation is conditioned by the previous counter state in addition to the input
symbol:

ct = r(xt ,z(ct−1))ct−1 +u(xt ,z(ct−1)) (5.5)

=⇒ ct =
t

∑
i=1

(t

∏
j=i+1

r(x j,z(c j−1))
)
u(xi,z(ci−1)). (5.6)

This modification means that the values of r and u are conditioned by more-than-finite state.
Thus, we can no longer use the same scheme to write a WFSA where r and u are introduced
by a finite number of state transitions.

Peng et al. [21] notes an analogous problem in reducing the LSTM gate update to a
rational recurrence. In their case, the fact that c̃t depends on ht−1 prevented the derivation of
a rationally recurrent form. Thus, there is a striking similarity between LSTM computation
and general counter machine computation. Just as these observations led Peng et al. [21] to
conjecture that the LSTM is not rationally recurrent, I conjecture that the general counter
machine is not rationally recurrent:

Conjecture 5.3.1 (The general case). A general counter machine is not rationally recurrent.

An interesting implication of Peng et al. [21]’s conjecture that LSTMs are not rationally
recurrent is that the simplified counter machines are strictly weaker than LSTM computation.
This is consistent with the theoretical and empirical arguments that I present in Chapter 4.
Therefore, it seems likely that the LSTM languages, although probably not as powerful as the
general counter languages, are substantially more powerful than Weiss et al. [27]’s simplified
counter languages.

Chapter 6

Implications for natural language

Given that LSTMs seem to act as counter machines, we should ask how counter machines
relate to formal models of natural language grammar. This gives us some insight about how
similar an LSTM’s representation of syntax is to that which exists in the mind. In particular,
I consider the linguistic property of semilinearity, as well as the relationship between counter
languages and context-free languages.

Finally, I will also discuss the significance of the state complexity measure from the
point of view of syntactic structure. We will see that the state complexity of a grammar is
inherently related to the types of embedding and agreement that it can be sensitive to.

6.1 Semilinearity of counter languages

Semilinearity is a condition that has been proposed as a desired property for any formalism of
natural language syntax [13]. Intuitively, semilinearity ensures that the set of string lengths
in a language will not be unnaturally sparse. More formally, we can define a language L to
be semi-linear if its Parikh mapping is a semilinear set.

Definition 6.1.1 (Parikh vector). The Parikh vector for a string x ∈ L is

Ψ(x) = ⟨#(σ1,x), ..,#(σn,x)⟩ .

Definition 6.1.2 (Parikh mapping). The Parikh mapping of a language L is

Ψ(L) = {Ψ(x) | x ∈ L} .

In machine learning terms, we might describe the Parikh mapping of a string as its bag-of-
characters representation. By translating languages into vector spaces, the Parikh mapping
allows us to define the semilinear languages:

38 Implications for natural language

Definition 6.1.3 (Semilinear set). A set S ⊆ Nn is semilinear if it can be written as the finite
union of the form

m⋃
i=1

{Wix+bi = 0 | x ∈ Nn} .

Definition 6.1.4 (Semilinear language). A language L is semilinear if Ψ(L) is semilinear.

Regular languages, context-free grammars, and a variety of mildly context-sensitive
grammar formalisms are known to be semilinear [13]. Since counter machines exhibit a
lot of the same properties as context-free grammars, it seems reasonable that the counter
languages might also be semilinear. While I do not prove this in full generality, I present a
proof that the stateless simplified counter languages are semilinear. This line of reasoning
might in the future be extended to the general counter languages.

Definition 6.1.5 (Stateless simplified counter languages). Let Q̃SCL be the class of languages
acceptable by a simplified counter machine with only one state.

Theorem 6.1.1 (Semilinearity of Q̃SCL). L ∈ Q̃SCL is semilinear.

Proof. We can start by expressing L as

L =
⋃

b∈F

{x | cn(x) = b}. (6.1)

Since semilinear languages are closed under finite union, L is semilinear if each of the
following sets, which correspond to specific accepting configurations, is semilinear:

Lb = {x | cn(x) = b}. (6.2)

Furthermore, this set can be rewritten as the intersection of sets with elementwise constraints.
Since semilinear languages are closed under finite intersection, the problem reduces to
showing that each Lb(i) is semilinear:

Lb(i) = {x | [cn]i(x) = bi}. (6.3)

I claim that Lb(i) is semilinear. We first consider the simple case where counter i cannot
be zeroed. Since counter i cannot be reset, we can write

bi = [cn]i(x) =
n

∑
t=1

ui(xt) = ∑
σ∈Σ

#(σ ,x)ui(σ). (6.4)

6.2 Counter machines and context-free grammars 39

Note that the right half of this equation parameterizes N|Σ|. When b = 0, we target a subspace
of N|Σ|, which means Lb(i) is semilinear. When b = 1, we target the complement of this
hyperplane, which can be expressed as the union of two linear sets. Therefore, Lb(i) is always
semilinear.

Now, I claim that Lb(i) is also semilinear when counter i can be zeroed by the specification
of the counter machine. To analyze this case, I define L′

b(i) as the language where all the
characters that zero out counter i are removed from the alphabet. Clearly, this language is
semilinear by the same argument as the simple case we just considered (6.4). I also define
the language

Rb(i) = Lb(i)−L′
b(i). (6.5)

Lb(i) is semilinear if Rb(i) is semilinear since Lb(i) = L′
b(i)∪Rb(i). Thus, we just need to

show that Rb(i) is semilinear to complete the proof. To do this, consider a string x ∈ Rb(i).
There is some index which is the last occurrence of a character that resets counter i. We will
define the suffix starting after this index to be the string ω . Observe the set of all ω is Lb(i).
Also, we can represent any x ∈ Rb(i) as

αρω, (6.6)

where α is any string over Σ, and ρ is the last symbol which resets counter i. Since all
three of these substrings come from semilinear languages and semilinearity is closed under
concatenation, Rb(i) is semilinear.

While this proof only applies to the stateless simplified counter languages (which are
quite a restricted class), I conjecture that a similar argument can be extended to SCL, or
possibly even to CL.

Conjecture 6.1.1 (Semilinearity of SCL). L ∈ SCL is semilinear.

Conjecture 6.1.2 (Semilinearity of CL). L ∈ CL is semilinear.

6.2 Counter machines and context-free grammars

Context-free languages do a decent but imperfect job of modeling the hierarchical structure
that occurs in natural language [4]. On the other hand, counter machines seem to be a good
model for LSTM computation. Thus, comparing the generative capacities of these two

40 Implications for natural language

automata architectures is, in some sense, comparing the types of languages that LSTMs can
effectively model to natural language.

Context-free grammars and counter machines are both strictly more powerful than regular
expressions. This is because, if we ignore the memory mechanism of each machine, we
are left with a simple finite-state machine. We know, however, that neither class is a subset
of the other. The language anbncndn is an example of a counter-acceptable language that
is not context-free. On the other hand, the reverse language w#wR is context-free, but not
counter-acceptable [27].

A surprising classical result is that the language of well-formed preorder expressions
is real-time acceptable [8] by a 1-counter machine. I say that this is surprising because
pre-order boolean expressions have a rich hierarchical structure resembling the syntactic
trees of natural language. We can formalize this language Ln as follows:

Definition 6.2.1 (Ln). Let Ln be the language generated by the grammar:

<exp> -> <VALUE>
<exp> -> <UNARY_OP> <exp>
<exp> -> <BINARY_OP> <exp> <exp>
<exp> -> <n-ARY_OP> <exp> .. <exp>

Fischer et al. [8]’s proof of this theorem essentially uses a counter to keep track of the
depth at any given index. If the depth counter returns to its initial value at the end of the
string, the machine has verified that the string is well-formed. This algorithm is in some
sense agnostic to the actual structure of the string in that it cannot recover the dependencies
between tokens. This means that it could not be used to evaluate one of these expressions, for
example. This observation motivates the next theorem, which shows that a counter machine
is unable to evaluate even a very simple language of expressions:

Theorem 6.2.1 (Weak evaluation). A real-time k-counter transducer cannot evaluate pre-
order boolean expressions.

Proof. Assume not. Consider the case where the input contains a prefix of n operators. For
the machine to evaluate the string correctly, the configuration after character n must encode
which boolean function is determined by the prefix.

However, a real-time k-register machine only has |Q|nk configurations. I will show
by induction that an n-length prefix of operators can encode 2n boolean functions. Since
|Q|nk < 2n for large enough n, we reach a contradiction.

In the base case, we have a prefix of length zero which is followed by one value. If this
value is 0, the expression will evaluate to 0, and if this value is 1, the expression will evaluate
to 1. Therefore, we can represent exactly one function, which is the identity.

6.3 State complexity of sentence embedding 41

Consider the inductive case. The expression has a prefix of operators x1, ..,xn+1 followed
by symbols xn+2, ..,xl . First, observe that xl must be atomic to make the expression syntacti-
cally allowable. The value xl must be the second argument of x1, which forces everything
else to be x1’s first argument. Thus, the semantics of the full expression can be represented as

[[x1, ..,xn+1]] = [[x1]]([[x2, ..,xl−1]], [[xl]]). (6.7)

Observe that x2, ..,xl−1 is a prefix of length n. Thus, by inductive hypothesis, [[x2, ..,xn+1]]

could be one of 2n possible functions. The compositional relationship in (6.7) introduces a
new variable into all of these possible functions, so we get two new functions in [[x1, ..,xn+1]]

by fixing x1:

f∧ = [[∧]]([[x2, ..,xl−1]], [[xl]]) = [[x2, ..,xl−1]]∧ [[xl]] (6.8)

and

f∨ = [[∨]]([[x2, ..,xl−1]], [[xl]]) = [[x2, ..,xl−1]]∨ [[xl]]. (6.9)

We can verify that f∧ and f∨ are different functions by considering the first sequence of
bits that will satisfy them according to a right-to-left ordering. We see that this sequence for
f∧ will necessarily end in a 1, whereas for f∨ it will end in a 0. Therefore, we are introducing
exactly two new functions for each f , which means a n+ 1-length sequence can encode
2 ·2n = 2n+1 many n+1-ary functions.

This result relies on the crucial fact that the number of configurations of a general counter
machine is bounded by |Q|nk. A context-free grammar, on the other hand, has exponentially
many memory configurations.

6.3 State complexity of sentence embedding

Embedding in natural language is the process of placing one sentence within another one.
This kind of recursive procedure is one of the things that gives natural language grammars
their infinite capacity. Different kinds of embedding have different kinds of processing
demands. Interestingly, we can apply the same notion of state complexity that we used to
analyze neural network architectures and counter machines to these grammars. What we find
is that different levels of state complexity enable different types of embedding.

42 Implications for natural language

6.3.1 Right embedding

Different kinds of embedding exist in natural language. Right embedding consists of concate-
nating sentences in a sequence. For example:

(1) a. Gudrun sees Mary.

b. John knows Gudrun sees Mary.

c. I believe John knows Gudrun sees Mary.

Formally speaking, we can construct the following toy grammar to simulate the dependency
structures of right embedding:

Definition 6.3.1 (Right embedding grammar). Define the grammar:1

<sentence> -> #
<sentence> -> <NOUN> <VERB> <sentence>

This simple form of embedding can be parsed fairly simply. In fact, doing so only requires
a finite number of states. To demonstrate this, we could accept the language generated by
Definition 6.3.1 using the following finite-state machine:

q0start q1

<NOUN>

<VERB>

6.3.2 Center embedding

Another way to recursively generate sentences is to place the inner sentence within the outer
sentence constituent. This is called center embedding, and it occurs in constructions like
relative clauses:

(2) a. The cat slept.

b. The cat the dog chased slept.

c. ? The cat the dog the boy fed chased slept.

Already with these examples, we see that processing center embedding is fairly memory-
intensive. Whereas sentences (2a) and (2b) are clearly grammatical, it takes some time to
verify that (2c) checks out. We can build a toy model of center embedding as follows:

1I use # here to represent the null string.

6.3 State complexity of sentence embedding 43

Definition 6.3.2 (Center embedding grammar). Define the grammar:

<sentence> -> #
<sentence> -> <NOUN> <sentence> <VERB>

We can verify whether a sentence is in this language with a linear number of states using
a counter machine. This is true because the center embedding language is isomorphic to
anbn. However, the task becomes more complex if we want to evaluate the semantics of a
construction like this, or, similarly, enforce agreement between corresponding nouns and
verbs.

6.3.3 Matched center embedding

Matched center embedding is a variant of this center embedding grammar that enforces
agreement between the noun and the verb at each level of the embedding:

Definition 6.3.3 (Matched center embedding grammar). Define the grammar:

<sentence> -> #
<sentence> -> <NOUN[SG]> <sentence> <VERB[SG]>
<sentence> -> <NOUN[PL]> <sentence> <VERB[PL]>

This kind of feature agreement is common in natural language. For example, in English,
there is number agreement between a verb and its subject:

(3) a. The cat the dog sees runs.

b. * The cat the dog sees run.

Because the grammar needs to keep track of the grammatical number at each depth, the
number of states we need to verify that a sentence is in the language becomes exponential.
To see this, observe that this grammar is isomorphic to a subset of a Dijk language with
two different kinds of parentheses. If we allow sequences of balanced parentheses at each
level, we get a grammar that mixes right and center embedding. The state complexity of this
grammar remains exponential.

6.3.4 The Linzen agreement task

A toy grammar that mixes center and right embedding while enforcing agreement between
nouns and verbs is a good formal model of the Linzen agreement task [16]. This task consists

44 Implications for natural language

of reading a sequence of words and then predicting the number of the following verb. The
Linzen task has been used in the literature as a method of assessing the syntactic capabilities
of different kinds of neural networks. We can view the exponential state complexity of the
formal grammar model (Subsection 6.3.3) as a theoretical argument that solving this task
requires structure sensitivity.

Interestingly, LSTMs can perform very well on the Linzen task, despite the fact that I
have shown that they only have polynomial state complexity (2.2.1). One explanation for this
might be that the embedding depth that actually occurs in natural-language data is bounded.
In practice, we do not need exponential state complexity to keep track of structure. This
hypothesis agrees with the the follow-up analysis done by Linzen et al. [16]. While LSTMs
perform remarkably well on the general agreement task, they perform dramatically worse
when evaluation targets syntactically complex cases.

6.3.5 Chomsky dependencies

State complexity is inherently related to the type of dependencies between words that a
grammar can be sensitive to. By dependencies between words, I mean that the form of
one word is linked to the form of a word earlier in the sentence. An example of this from
Subsection 6.3.3 is English number agreement. In his foundational work on generative
syntax, Chomsky [4] formalizes this notion of a syntactic dependency. I recast this definition
as follows:

Definition 6.3.4 (Chomsky dependency). Consider a sentence x ∈ L. There is a dependency
between indices i and j with i < j if there exist character yi,y j such that

x1:i−1yixi+1:n /∈ L (6.10)

and

x1:i−1yixi+1: j−1y jx j+1:n ∈ L. (6.11)

Using this definition, we can formalize how many dependencies a sentence contains:

Definition 6.3.5 (Dependency set). The dependency set of a sentence x ∈ L is the set of
tuples ⟨ik, jk⟩ such that

1. there is a dependency between ik and jk in x for each k;

2. ik < jl for each k, l;

6.3 State complexity of sentence embedding 45

3. ik ̸= il and jk ̸= jl for each k, l.

The size of this set corresponds to the number of nested dependencies in the sentence.
Chomsky [4] observes that, if a sentence x ∈ L has m dependencies, a finite-state machine
which accepts L must have at least 2m states. A consequence of this fact is that regular
languages can only have finitely many dependencies. We can extend this relationship from
finite-state machines to machines with bounded state, i.e. where the number of states at any
time step is bounded by a function of n.

Remark 6.3.1 (Dependencies and state complexity). If x ∈ L has T (n) dependencies, then
any machine which accepts L has at least 2T (n) states.

This fact makes interesting predictions about the types of dependencies or agreement that
different computational models can be sensitive to. For example, it explains the explosion in
state complexity that incorporating agreement caused in Subsection 6.3.3. From the point of
view of syntax, the state complexity of a grammar is fundamentally related to its ability to
represent agreement and embedding.

Chapter 7

Conclusion

Asymptotic acceptance (Definition 1.2.2) provides a way to analyze neural networks as
automata. This is a useful and generalizable tool for building intuition about how a network
might work, as well as for comparing the formal properties of different architectures.

I observe empirically, however, that this discrete analysis fails to fully characterize the
range of behaviors expressible by neural networks. In particular, RNNs predicted to be
finite-state can clearly solve a task that requires more than finite memory. On the other hand,
introducing a small amount of noise into a network’s activations seems to prevent it from
implementing non-asymptotic strategies. Thus, asymptotic characterizations might be a good
model for the languages learnable by networks trained on real natural language data.

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[2] George S Boolos, John P Burgess, and Richard C Jeffrey. Computability and logic.
Cambridge university press, 2002.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[4] Noam Chomsky. Three models for the description of language. IRE Transactions on
information theory, 2(3):113–124, 1956.

[5] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua
Bengio. Attention-based models for speech recognition. In Advances in neural infor-
mation processing systems, pages 577–585, 2015.

[6] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[7] Patrick C Fischer. Turing machines with restricted memory access. Information and
Control, 9(4):364–379, 1966.

[8] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and
counter languages. Mathematical systems theory, 2(3):265–283, Sep 1968. ISSN 1433-
0490. doi: 10.1007/BF01694011. URL https://doi.org/10.1007/BF01694011.

[9] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom.
Learning to transduce with unbounded memory. In Advances in Neural Information
Processing Systems, pages 1828–1836, 2015.

[10] Yiding Hao, William Merrill, Dana Angluin, Robert Frank, Noah Amsel, Andrew Benz,
and Simon Mendelsohn. Context-free transductions with neural stacks. arXiv preprint
arXiv:1809.02836, 2018.

[11] Jeffrey Heinz, Chetan Rawal, and Herbert G Tanner. Tier-based strictly local constraints
for phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies: short papers-Volume 2,
pages 58–64. Association for Computational Linguistics, 2011.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

https://doi.org/10.1007/BF01694011

50 References

[13] Aravind K Joshi, K Vijay Shanker, and David Weir. The convergence of mildly context-
sensitive grammar formalisms. Technical Reports (CIS), page 539, 1990.

[14] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. In AAAI, pages 2741–2749, 2016.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[16] Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to
learn syntax-sensitive dependencies. arXiv preprint arXiv:1611.01368, 2016.

[17] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating wikipedia by summarizing long sequences.
arXiv preprint arXiv:1801.10198, 2018.

[18] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[21] Hao Peng, Roy Schwartz, Sam Thomson, and Noah A Smith. Rational recurrences.
arXiv preprint arXiv:1808.09357, 2018.

[22] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. URL https://s3-us-west-2. amazon-
aws. com/openai-assets/research-covers/language-unsupervised/language_ understand-
ing_paper. pdf, 2018.

[23] James Rogers and Geoffrey K Pullum. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information, 20(3):329–342,
2011.

[24] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[25] Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT
’92, pages 440–449, New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi:
10.1145/130385.130432. URL http://doi.acm.org/10.1145/130385.130432.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008, 2017.

http://doi.acm.org/10.1145/130385.130432

References 51

[27] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of
finite precision RNNs for language recognition. CoRR, abs/1805.04908, 2018. URL
http://arxiv.org/abs/1805.04908.

[28] Carl-Gustav Werner. The allrunes font and package. 2004.

[29] Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer,
and Phil Blunsom. Memory architectures in recurrent neural network language models.
2018.

[30] Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei Zhang, and Zhou Zhao. Investi-
gating capsule networks with dynamic routing for text classification. arXiv preprint
arXiv:1804.00538, 2018.

http://arxiv.org/abs/1805.04908

Appendix A

Counter machines

Informally, counter machines are a class of automata that can use a finite number of integer
variables as memory. From this point of view, they are similar to the computational model
known as the abacus machine [2].

Early results in theoretical computer science established that a 2-counter machine with
unbounded computation time is Turing-complete [7]. It turns out, however, that when we
restrict the computation to be real-time (i.e. one iteration of computation per input), the
computational capacity of counter machines is severely limited. As we have seen, this is a
striking similarity between counter machines and LSTMs.

While the classical literature on counter machines focused more on the unbounded variant,
Weiss et al. [27] discuss the real-time machine because of its potential relationship to LSTM
computation. In particular, they argue that a simplified variant of the counter machines can
be simulated by LSTMs, and they provide empirical evidence to justify that LSTM languages
models can learn to manipulate their memory cells as counters. They also note that, while
their theoretical arguments only hold for a restricted class of counter machines, LSTMs seem
to be powerful enough to handle some general counter languages.

In this work, I will focus only on the real-time counter machines as language acceptors.
I will attempt to paint a comprehensive picture of counter computation by comparing the
sets of languages that different variants of counter machines can accept. In particular, we
will look at the general real-time counter machines, the simplified machines from Weiss et al.
[27], and some slightly less restricted forms of counter machines. It turns out that some of
the restrictions imposed by Weiss et al. [27] on the original counter model severely restrict
the computational capacity of the model, whereas others do not change what it can compute.

54 Counter machines

A.1 The general counter machine

We first define a fully general counter machine, as well as the class of languages that are
acceptable by such a machine in real time [7, 8].

Definition A.1.1 (General counter machine). We define a counter machine as a tuple of the
form ⟨Σ,Q,q0,k,u,δ ,F⟩ containing

1. A finite alphabet Σ

2. A finite set of states Q

3. An initial state q0

4. A number of counters k ∈ N

5. A counter update function

u : Σ×Q×{0,1}k →
(
{λx.x+n : n ∈ Z}∪{λx.0}

)k

6. A state transition function

δ : Σ×Q×{0,1}k → Q

7. An acceptance mask
F : Q×{0,1}k →{0,1}

Note that I will generally represent F as a masking function, but at times it will be more
convenient to treat it as a set of accepting configurations ⟨q,b⟩.

Next, we can define a computational configuration for such a machine, as well as what it
means for the machine to accept a string. To do this, we will need a notion of a zero-check
function z.

Definition A.1.2 (Zero-check function).

z(x) =

0 if x = 0

1 otherwise.

Definition A.1.3 (Counter machine computation). Let ⟨q,c⟩ ∈ Q×Zk be a configuration of
machine M. Upon reading input x ∈ Σ, M transitions into the new configuration ⟨q′,c′⟩ where

A.2 Counter machine variants 55

c′ = u(x,q,z(c)) (A.1.3.1)

and

q′ = δ (x,q,z(c)). (A.1.3.2)

We write this relation as

⟨q,c⟩ →x ⟨q′,c′⟩. (A.1.3.3)

Definition A.1.4 (Real-time string acceptance). A counter machine accepts a string x1, ..,xn

if

⟨q0,0⟩ →x1 ⟨q1,c1⟩ →x2 ..→xn ⟨qn,cn⟩ (A.1.1)

and

F
(
qn,z(cn)

)
. (A.1.2)

Definition A.1.5 (Real-time language acceptance). A counter machines accepts a language
L if its accepts each α ∈ L and rejects each β /∈ L.

Definition A.1.6 (Counter languages). Let CL be the set of languages that are acceptable in
real time by a general counter machine.

A.2 Counter machine variants

Now, we can can consider various restrictions of this machine, and the corresponding classes
of languages acceptable by such automata. First, we redefine the simplified counter machine
discussed by Weiss et al. [27], which they call an "SKCM".

Definition A.2.1 (Simplified counter machine). A simplified counter machine is a counter
machine where u takes the restricted form

u : Σ →{−1, +0, +1, ×0}k.

Definition A.2.2 (Simplified counter languages). Let SCL be the set of languages that are
acceptable in real time by a simplified counter machine.

56 Counter machines

We can view the counter update function in the simplified counter machine as having two
important restrictions compared to the general machine. First, it can only be conditioned by
the input symbol at each time step. Second, its update operation must be a 0 or 1 instead of
any arbitrary constant.

Another variant which we consider is the incremental counter machine, which is affected
only by the second of these restrictions.

Definition A.2.3 (Incremental counter machine). An incremental counter machine is a
counter machine where u takes the restricted form

u : Σ×Q×{0,1}k →{−1, +0, +1, ×0}k.

Definition A.2.4 (Incremental counter languages). Let ICL be the set of languages that are
acceptable in real time by an incremental counter machine.

I will also define a variant of counter machines that operate without state. For simplicity,
we will say that the counter machine has exactly one state q0, but note that this is equivalent
to reformulating the counter machine specification with all references to state removed.

Definition A.2.5 (Stateless counter machine). A stateless counter machine is a counter
machine with only one state q0.

Definition A.2.6 (Stateless counter languages). Let Q̃CL be the set of languages that are
acceptable in real time by a stateless counter machines.

A.3 Relationships between counter classes

It turns out that the simplified counter languages are a strict subset of the general counter
languages. Their weakness comes from the fact that the counter update function can only be
conditioned by the input symbol. A language that illustrates this difference is anb2n:

Theorem A.3.1 (Weakness of SCL).

SCL ⊂ CL.

Proof. Consider the language anb2n. This is trivially acceptable by a 1-counter machine that
adds 2 for a and subtracts 1 for b. On the other hand, I claim it cannot be accepted by any
simplified machine. We will think about the subproblem of distinguishing between strings in
a∗b∗ and focus on the value of a single counter. After scanning the a sequence, we know that

A.3 Relationships between counter classes 57

its value must be ua ∈ {−n,0,n}. Then, when we read the bs, the additional update to the
counters must be ub ∈ {−2n,0,2n}.

We need to determine whether the number of as equals the twice number of bs based on
the value of z(c) = z(ua +ub). But this cannot be done: if we pick the 0 update for both a
and b, then for any σ ∈ a∗b∗,

ua +ub = 0 =⇒ z(ua +ub) = 0. (A.3.1)

On the other hand, if we pick any other pair of ua and ub, then for any σ ∈ a∗b∗,

ua +ub ̸= 0 =⇒ z(ua +ub) = 1. (A.3.2)

So, for any pair of update operations we pick, the counters cannot distinguish whether
the number of bs is twice the number of as.

Note that this counterexample breaks down if we allow the counter update to depend on
the state. In that case, we can build a machine which has two counters and three states: one
which adds 1 to the first counter while it reads bs, another which decrements the first counter
and increments the second counter, and a third which decrements the second counter until
the end of the string. This motivates the next theorem.

Whereas the simplified counter model is weaker than the general counter machine, just
restricting the counter updates to be incremental does not limit the machine’s computational
power. Similarly, restricting the machine to be stateless does not weaken it. I demonstrate
this in the next two theorems.

Theorem A.3.2 (Generality of ICL).

CL = ICL.

Proof. By construction, ICL ⊆ CL. The goal is to show that CL ⊆ ICL. We do this by
simulating a single register in the general counter machine with a constant number of
registers on the incremental machine.

Consider a counter c in the general machine. We will define a vector of registers ĉ1, .., ĉk

to correspond to c, where k is the maximum value by which c is ever incremented. We will
define a way to to read off the value of c from ĉ, as well as ADD(δ), SUB(δ), and SET(0)
update operations.

I will define the following invariants over the counter values, and later show that they are
preserved by the update operations:

58 Counter machines

c =
k

∑
n=1

nĉn (A.3.3)

ĉ is one-hot or 0. (A.3.4)

A natural way of computing the zero mask of the simulated counters follows from these
invariants:

z(c) ⇐⇒
k∨

n=1

z(ĉn). (A.3.5)

We can simulate counter updates according to the following operations:

• SET(0):
∀ j u j =×0. (A.3.6)

• ADD(δ):
ui =−1, umin(i+δ ,k) =+1, ui+δ−k =+1. (A.3.7)

• SUB(δ): ui =−1, ui−δ =+1 if i ≥ δ

ui =−1, uk =−1, uk+i−δ =+1 otherwise.
(A.3.8)

By un, we denote the update operation for counter n. If n ≤ 0 upon evaluation in the
expressions below, then we do not apply un to any counter. Let i be the nonzero index in ĉ
or 0 if this is undefined. Also note that each of these update functions is representable on a
counter machine because each can be written as a finite function of the form

(z(ĉ),n) 7→ un.

Consider the ADD(δ) update. In general, the form of the new value of the counter vector
will be given by

k

∑
n=1

n(ĉn +un) =
k

∑
n=1

nĉn +
k

∑
n=1

nun (A.3.9)

= c+ iui +min(i+δ ,k)umin(i+δ ,k)+1i+δ>k(i+δ − k)ui+δ−k. (A.3.10)

When i+δ > k, we get

c− i+ k+ i+δ − k = c+δ . (A.3.11)

A.3 Relationships between counter classes 59

In the other case, i+δ ≤ k. Then we get

c− i+ i+δ = c+δ . (A.3.12)

Either way, the non-leading counters remain a one-hot or zero-hot vector. This is true because
the one-hot index is zeroed out, and at most one non-leading index is set to one.

Now, consider the SUB(δ) update. When i ≥ δ , the new counter state is given by

c− i+ i−δ = c−δ . (A.3.13)

In the complementary case where i < δ , we get

c− i− k+ k+ i−δ = c−δ . (A.3.14)

Again, we know that the non-leading counters remain a one-hot or zero-hot vector because
index i is always zeroed out, and at most one other non-leading position is set to 1.

Theorem A.3.3 (Generality of Q̃CL).

CL = Q̃CL.

Proof. Consider a counter machine M = ⟨Σ,Q,q0,k,δ ,u,F⟩. We define a new stateless
machine M′ whose counters are augmented by a vector q̂ with length |Q|. We initialize
q̂0 = 1 and set all other indices to 0. Furthermore, we define as an invariant that

q(M) = qi ⇐⇒ q̂ = ω(i) (A.3.15)

where ω(i) is a one-hot vector encoding i. This invariant gives us a natural way to check
acceptance in the new machine. We can translate the old acceptance function into a stateless
version according to

F ′(b∥ω(i)) = F(qi,b). (A.3.16)

The counter update function in the new machine is slightly more complicated because it
needs to deal with both counter and state updates, but we can use a similar trick. First, we
define two functions u′1 and u′2 which respectively update the inherited counters and state
counters:

u′1 (x,b∥ω (i)) = v ⇐⇒ u(x,qi,b) = v (A.3.17)

and

60 Counter machines

u′2 (x,b∥ω(i)) =−ω(i)+ω(j) ⇐⇒ δ (x,qi,b) = q j. (A.3.18)

Then, we can define u′ in terms of u′1 and u′2 according to

u′(σ ,b∥ω(i)) = u′1(σ ,b∥ω(i)) ∥ u′2(σ ,b∥ω(i)). (A.3.19)

Note that the state vector updated by u′2 is a one-hot encoding of q j because

ω(i)+
(
−ω(i)+ω(j)

)
= ω(j), (A.3.20)

which implies that the invariant is preserved. Now, we have a stateless counter machine
M′ = ⟨Σ,k+ |Q|,u′,F ′⟩ which simulates M.

A.4 Closure properties of counter classes

Theorem A.4.1 (General set operation closure). CL is closed under any n-ary set-theoretic
operation whose result’s characteristic function can be written as an n-ary boolean function

1L′(α) = p
(
1L1(α), ..,1Ln(α)

)
.

Corollary A.4.1.1 (Complement closure). CL is closed under complement.

Corollary A.4.1.2 (Intersection closure). CL is closed under intersection.

Corollary A.4.1.3 (Union closure). CL is closed under union.

Corollary A.4.1.4 (Set difference closure). CL is closed under set difference.

Corollary A.4.1.5 (Symmetric difference closure). CL is closed under symmetric difference.

Proof. Given finitely many counter machines M1, ..,Mn, I will construct M′ which runs all
the machines in parallel, and then accepts if p holds of the results. We can formalize this
by saying that q′ ∈ Q1 × ..×Qn and c′ ∈ Zk1×..×kn . Let q′ = ⟨q1, ..,qn⟩ and analogously for
b′,c′,u′. We can write the update functions for the new machine as

δ
′(x,q′,b′) = ⟨δ1(x,q1,b1), ..,δn(x,qn,bn)⟩ (A.4.1)

and

u′(x,q′,b′) = λc′.u1(x,q1,b1)∥..∥un(x,qn,bn). (A.4.2)

A.4 Closure properties of counter classes 61

Finally, we can write our acceptance mask in terms of p as

F ′(q′,b′) ⇐⇒ p
(
F1(q1,b1), ..,Fn(qn,bn)

)
. (A.4.3)

Interestingly, all of these closure properties also apply to the simplified counter languages.
This is because Theorem A.4.1 only relies on the structure of F . In other words, we can
reformulate a construction in which u is only conditioned on x.

Appendix B

Linearly separable expressions

A linearly separable boolean expression is one where a hyperplane can be used to separate
the true settings of variables from the false settings of variables. Since the focus of this work
is on neural networks, we will give an equivalent definition in terms of a sigmoidal affine
transformation:

Definition B.0.1 (Linearly separable expression). An expression φ : X →{0,1} is linearly
separable in x if and only if there exists W and b such that

lim
N→∞

σ

(
N
(
Wx+b

))
= 1φ (x).

It immediately follows from this definition that, if an expression is linearly separable in x,
then it is asymptotically computable by a single neural network layer whose input is x.

B.1 Common linearly separable forms

Knowing whether an expression is linearly separable is useful for determining whether it can
be computed in one neural network layer. Therefore, I will compile a list here of some forms
that are known to be linearly separable. These facts are frequently referenced throughout my
main results.

Theorem B.1.1 (Conjunction). The following formula is linearly separable in x∥y:

n∧
i=1

xi ∧
m∧

j=1

¬y j.

Proof. We pick a weight of N for each xi, a weight of −N for each yi, and a bias of −(n− 1
2)N.

Then, the form of the transformation is

64 Linearly separable expressions

lim
N→∞

σ
(n

∑
i=1

Nxi −
m

∑
j=1

Ny j − (n− 1
2
)N

)
,

which will be 1 only when all the xi are 1 and none of the yi are 1, and 0 otherwise.

Theorem B.1.2 (Negation). Let φ(x) be a linearly separable form in x. Then, the following
form is linearly separable in x:

¬φ(x).

Proof. Take an affine transformation for φ , and then take its additive inverse.

Theorem B.1.3 (Disjunction). The following formula is linearly separable in x∥y:

n∨
i=1

xi ∨
m∨

j=1

¬y j.

Proof. This form is linearly separable if its negation is linearly separable (B.1.2). Further-
more, since its negation is a conjunction of terms, we know that it is in fact linearly separable
(B.1.1).

Theorem B.1.4 (Disjunction and conjunction). The following formula is linearly separable
in x∥y∥z:

n∨
i=1

xi ∧
m∧

j=1

y j ∧
l∧

k=1

¬zk.

Proof. We pick a weight of N for each xi, (n+1)N for each yi, −(n+1)N for each zi, and a
bias of

(
(n+1)m+ 1

2

)
N. Then, the form of the transformation is

lim
N→∞

σ

(n

∑
i=1

Nxi +
m

∑
j=1

(n+1)Ny j −
l

∑
k=1

(n+1)Nzl −
(
(n+1)m+

1
2
)
N
)
.

To make this quantity equal to 1, we require all the y j to be 1 and all the zl to be zero, because,
if not, all the positive mass from the xi cannot exceed nN < (n+1)N. In addition, we require
at least one of the xi to be on to overcome the additional N

2 of the bias term. Otherwise, the
sigmoid will come out to 0.

	Table of contents
	1 Introduction
	1.1 Background
	1.2 Introducing the asymptotic analysis
	1.2.1 State complexity

	2 Recurrent neural networks
	2.1 SRNs
	2.2 LSTMs
	2.3 GRUs
	2.4 Summary

	3 Other neural sequence models
	3.1 Convolutional networks
	3.2 Attention
	3.3 Transformers
	3.4 Stack recurrent networks
	3.5 Summary

	4 Empirical results
	4.1 Counting
	4.2 Counting with noise
	4.3 Reversing

	5 Rational recurrences
	5.1 WFSAs
	5.2 Simplified counter machines as rational recurrences
	5.3 General counter machines

	6 Implications for natural language
	6.1 Semilinearity of counter languages
	6.2 Counter machines and context-free grammars
	6.3 State complexity of sentence embedding
	6.3.1 Right embedding
	6.3.2 Center embedding
	6.3.3 Matched center embedding
	6.3.4 The Linzen agreement task
	6.3.5 Chomsky dependencies

	7 Conclusion
	References
	Appendix A Counter machines
	A.1 The general counter machine
	A.2 Counter machine variants
	A.3 Relationships between counter classes
	A.4 Closure properties of counter classes

	Appendix B Linearly separable expressions
	B.1 Common linearly separable forms

