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Abstract

Word alignment is the task of, given two sentences that are translations of each other, determining

which words correspond to each other across the two sentences. Word alignment is an important

step in the pipeline of constructing a statistical machine translation system, but success at word

alignment depends heavily on the quantity of training data available. The traditional methods for

computational word alignment, proposed by Brown et al. (1993), require large quantities of training

data. However, these methods fall short when such quantities of data are not available. To combat

this problem, I propose a framework that fills in the data gap by using data from languages related

to the one for which data are lacking. This technique is shown to improve significantly upon the

baseline alignment error rate.

In my proposed framework, aligning a sentence in a low-resource language with a sentence in

a high-resource language follows a 3-step procedure. First, a pivot language is chosen such that it

is both high-resource and as closely related to the low-resource language as possible. Edit distance

is then used to create a correspondence between the low-resource language and the pivot language,

while probabilities trained using the IBM Models are used to create a correspondence between the

pivot language and the high-resource language. I test several different settings for these three basic

components on the task of aligning Spanish and English, and I find that the most successful overall

alignment system uses Portuguese as the pivot language, a cognate-based algorithm for calculating

edit distance, and translation, distortion, and alignment probabilities from the IBM Models. With

this framework settled on, I then conduct some sample translations to demonstrate the utility of

this approach for machine translation. These translations are translating from Spanish to English,

and despite being trained only on Portuguese the translator still manages to yield rough translations

of Spanish text.
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Chapter 1

Introduction

In the field of natural language processing, success of an algorithm often depends upon access to

very large quantities of data upon which to train the algorithm; as the saying goes, there’s no

data like more data! Good data sets are at such a premium that some of the most-cited works

in the field of NLP are the releases of data sets, such as the Europarl corpus (Koehn 2005) with

2,138 citations, and the Penn Treebank (Marcus et al. 1993) with 6,355 citations. For mainstream

languages such as English and French, this requirement of big data is not a big problem because

there are large corpora available for such languages. However, for several thousand other languages,

there is nowhere near enough training data available to enable the creation of high-quality NLP

resources. Such languages are termed “low-resource languages."

One task that clearly demonstrates the problem with data shortages is word alignment. Word

alignment is the task of, given two sentences that are translations of each other, determining which

words correspond to each other semantically across the two languages. For example, for the Kin-

yarwanda sentence and its English translation in (1a) from Gerdts and Whaley (1991), the word

alignment between the two sentences is represented by (1b):

(1) a. Ikárámu
pen

umukoôbwa
girl

a-ra-andik-a
she-pres-write-asp

íbárúwa
letter

nziza
good

ná
with

yo.
it

‘The pen, the girl is writing a nice letter with it.’

b. Ikárámu umukoôbwa araandika íbárúwa nziza ná yo

The pen, the girl is writing a nice letter with it

Word alignment is an important step in many pathways toward building a machine translation

system, such as in the popular Moses software system (Koehn et al. 2007), and effective word

alignment depends heavily upon the size of the corpus upon which the word alignment algorithm

is trained. Therefore, success at word alignment (and, by extension, machine translation programs

based on word alignment) suffers greatly from a data shortage.

In this paper, I suggest a method to overcome data shortages for the purpose of word alignment.

Specifically, in the circumstance where one wishes to align sentences between two languages, one of
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which is low-resource and one of which is not, I propose making use of a high-resource pivot language

closely related to the low-resource language to compensate for the lack of data in the low-resource

language. For example, consider again the two sentences in (1b), but suppose there is no back-

ground information available on Kinyarwanda (the language in which the top sentence is written).

I hypothesize that the computer can compensate for this lack of Kinyarwanda data by incorporat-

ing data on Swahili, which is related to Kinyarwanda since both are Bantu languages and which

does have far more digital data than Kinyarwanda. For example, by noting that the Kinyarwanda

word íbárúwa resembles the Swahili word barua, and armed with the background knowledge that

barua is the Swahili word for letter, the computer can then make the reasonable assumption that

íbárúwa aligns with letter because words that appear similar in two related languages are likely to

be cognates and to thus have a significant degree of semantic similarity.

My approach utilizes edit distance to determine likely cognates in the pivot language for the

unknown words in the low-resource language, while I compute parameters for aligning pivot lan-

guage words with words in the high-resource language by using modified versions of the IBM word

alignment models. Thus, there are three basic components to my model−a pivot language, an edit

distance algorithm, and an alignment model−and I will test several different options for implement-

ing each of these.



Chapter 2

Word alignment

2.1 Previous approaches

This section details previous approaches to the task of word alignment and to machine translation

(the larger task which is the main purpose for conducting word alignment).

2.1.1 The IBM Models

Probably the most influential method for word alignment is the series of IBM models created by

Brown et al. (1993). These models make use of four quantities, namely translation probability,

alignment probability, fertility, and distortion probability, defined here:

Translation probability: For an English word e and a Portuguese word p, the translation

probability t(e|p) is the probability that e will be the translation for p.

Alignment probability: The alignment probability a(j|i, l,m) is the probability that, given

a Portuguese sentence of length l words and an English sentence of length m words, the ith

Portuguese word will be aligned with the jth English word.

Fertility: For a given Portuguese word p, its fertility n(s) is the number of English words

that are aligned with p. For each Portuguese word s, there is a fertility distribution describing

how likely it is that p will have a fertility of 1, or of 2, or of 3, etc.

Distortion probability: With jpk defined as the index within the English sentence to which

Portuguese word pk is aligned, the distortion probability d(jpi − jpi−1
) is the probability of

having a distance of jpi−jpi−1
between the English words aligned to two consecutive Portuguese

words.

Each of these quantities makes intuitive sense, but it is not particularly clear how to actually

quantify them. For example, even though English big and Portuguese grande correspond roughly

in meaning, it is not clear exactly what the value of t(big|grande) should be, nor is it clear how the

value of t(big|grande) should compare with t(huge|grande) or t(large|grande). The IBM models
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provide a way to quantify these abstract probabilities so that they can be used for actual NLP

applications.

There are five different IBM models of word alignment, each making use of different subsets of

the above four quantities. In general, each subsequent IBM model builds upon the previous one.

These IBM models are described in the following subsections. Each model operates under similar

principles−namely, using an expectation-maximization algorithm to find the most likely values of

the parameters under concern−but what varies are the sets of parameters being maximized over.

IBM Model 1

IBM Model 1 chooses a word alignment based solely on translation probability. For each pair of a

Portuguese word p and an English word e, the model will establish t(e|p), which is the translation

probability of e being the word that corresponds to the given Portuguese word p. To determine

these values, every possible t(e|p) for every possible pair of a Portuguese word p and an English

word e is initialized as

t(e|p) =
1

|English lexicon|
(2.1)

Then, an expectation-maximization (EM) algorithm is run to tune these translation probabili-

ties. At each step, information about which English and Portuguese words occur together in aligned

sentences is combined with the translation probabilities already determined to yield new translation

probabilities. The exact equation used to update the translation probabilities is as follows:

t(e|p) =
Σ(e,p)c(e|p : e,p)

ΣeΣ(e,p)c(e|p : e,p)
(2.2)

where c(e|p : e,p) is a function that, for a given pair of an English sentence e and a Portuguese

sentence p, incorporates both how often the words p and e co-occur as well as how likely they are

to correspond under the current model:

c(e|p : e,p) =
t(e|p)

Σle
i=0t(e|pi)

le
∑

j=1

δ(e, ej)

lp
∑

i=0

δ(p, pi) (2.3)

δ(a, b) =







1, if a = b.

0, otherwise.
(2.4)

The EM process would ideally be iterated until convergence, though in practice it is often iterated

for some fixed number of times (often 5) to save processing time.

For Portuguese sentence p and English sentence e, a set a of alignments is then defined to have

the following probability:

p(a|p, e) =

le
∏

i=0

t(ej |pa(j)) (2.5)

where a(j) is the index of the word in p to which ej is aligned.



Because each word is aligned independently, the probability in Equation 2.5 can be maximized

by, for each Portuguese word p, aligning it with

argmax
eǫe

t(e|p)

IBM Model 2

IBM Model 2 aligns words based on both translation probability and alignment probability. Thus,

for Portuguese sentence p and English sentence e, a set a of alignments is defined to have the

following probability:

p(a|p, e) =

le
∏

j=0

t(ej |pa(j))a(a(j)|j, le, lp) (2.6)

where a(j) is the index of the word in p to which ej is aligned, le is the length of the English

sentence, and lp is the length of the Portuguese sentence.

Rather than initializing the translation probabilities uniformly (as was done for IBM Model 1),

IBM Model 2 builds on IBM Model 1 by using translation probabilities trained from IBM Model 1

as its initial translation probabilities. However, the alignment probabilities (which are the aspect

newly added to create Model 2) are initialized uniformly. As in Model 1, an EM process is then

used to tune the values of both the alignment probabilities and the translation probabilities.

Again, as with Model 1, each translation probability and alignment probability can be calcu-

lated independently of how the other words in the sentences were aligned; thus, each Portuguese

word p can simply be aligned with the English word that maximizes p’s component of the product

in Equation 2.6.

IBM Model 3

IBM Model 3 adds the notion of fertility on top of IBM Model 2; thus, IBM Model 3 is conditioned

on translation probability, alignment probability, and fertility. Under this model, for Portuguese

sentence p and English sentence e, a set a of alignments is defined to have the following probability:

p(a|p, e) =

lp
∏

i=0

φi!n(φi|pi)

le
∏

j=0

t(ej |pa(j))a(a(j)|j, le , lp) (2.7)

where a(j) is the index of the word in p to which ej is aligned, le is the length of the English sentence,

lp is the length of the Portuguese sentence, and φi is the fertility of Portuguese word pi−that is,

the number of English words (potentially zero) to which pi is aligned. The φi! term arises from the

fact that the fertility component of IBM Model 3 can be considered as first mapping the Portuguese

word p to φ instances of itself and then aligning the result with the English sentence. This means

that, for a given final alignment, there will be φ! different ways to create the final alignment from

this intermediate representation (since there are φ instances of p that may be placed in any order).



For a given Portuguese word p, its fertility φ is modeled with a distribution n(φ|p). Model 3 is

initialized with the translation and alignment probabilities outputted by Model 2, while the fertility

distributions are initialized uniformly; all three distributions are then trained using EM.

IBM Model 4

IBM Model 4 adds the notion of relative alignment, here referred to as distortion. It is therefore

conditioned on translation probability, alignment probability, fertility, and distortion. Under this

model, for Portuguese sentence p and English sentence e, a set a of alignments is defined to have

the following probability:

p(a|p, e) =

lp
∏

i=0

φi!n(φi|pi)d(a
′(i)− a′(i− 1))

le
∏

j=0

t(ej |pa(j))a(a(j)|j, le , lp) (2.8)

where a(j) is the index of the word in p to which ej is aligned, a′(i) is the index of the word in e to

which pi is aligned, le is the length of the English sentence, and lp is the length of the Portuguese

sentence.

Model 4 is initialized with the translation probability, alignment probability, and fertility dis-

tributions outputted by Model 3, while the distortion probabilities are initialized uniformly. Again,

all parameters are then trained using EM. Note that, in the implementation I will be using (namely

mgiza (Gao and Vogel 2008)) the distortion probabilities are conditioned over word classes, so that

rather than having the term d(a′(i)−a′(i−1)) we would have d(a′(i)−a′(i−1)|c) where c is a word

class. Ideally, the distortion probabilities would be fully lexicalized (that is, with the probability

conditioned over individual words), but data is typically too sparse to do this. Instead, then, words

are split into about 100 classes based on distribution using the mkcls tool in the Moses software

package; this tool creates word classes by clustering words such that the probability of a string of

words based on a class bigram model is as close as possible to the probability of the string of words

based on a word bigram model, so that the distortions may be conditioned over these classes (Och

1999). The notion of using word classes is based on the fact that different types of words have

varying likelihoods of changing their positions relative to surrounding words when translating from

one language to another. For example, there might be a pair of languages that are both SOV but

where one language has adjectives appearing before the nouns and the other has adjectives after the

noun. In this case, the class-based distortion probabilities would reflect that adjectives are likely

to be reordered with respect to the nouns they’re near whereas verbs are not likely to be reordered

with respect to the nouns they are near.

IBM Model 5

Equation 2.8 does not create a true probability distribution because it allows multiple words from

the intermediate representation created after the fertilities have been determined (discussed under

Model 3) to be aligned to the same English word, when in fact this should not be allowed; it thus

allocates some probability mass to impossible cases. This problem is called deficiency, and the main

function of IBM Model 5 is to fix deficiency. However, I do not consider Model 5 in this paper



because it is not implemented in mgiza, the alignment toolkit that I use as a basis for many of the

probabilities that I use (Gao and Vogel 2008).

IBM summary

Each IBM model introduces some new linguistic aspect of the task of translation. IBM Model 1

basically corresponds to vocabulary matching or word-for-word translation, something like the act

of dictionary lookup. IBM Models 2 and 4 bring some syntax into the mix by factoring in sentence-

wide word position and local reorderings, respectively. IBM Model 3 allows for the fact that there

is not always a one-to-one mapping between words in different languages. (IBM Model 5 does not

really lend any new linguistic components, however).

Once training has been completed for the various IBM models, the resulting probability distri-

butions can be combined with a language model for the target language to be used for word-based

machine translation. This is the approach used by the popular machine translation toolkit Moses

(Koehn et al. 2007).

2.1.2 HMM word alignment

A hidden Markov model (HMM) is a model in which there is some sequence of hidden states paired

with a sequence of observations of some non-hidden property. The model is used to generate new

observations based on the sequence of hidden states that have already been generated. In theory,

all previous hidden states would be considered when choosing the next hidden state, but in practice

this approach leads to sparse data problems; thus, typically some order n is chosen such that only

the n previous hidden states are considered, and an HMM with such an assumption is called an

nth-order HMM. Vogel et al. (1996) propose an HMM-based word alignment model that, like IBM

Model 4, focuses on the relative positions of words rather than their absolute positions (as in IBM

Model 2). In this model, the source words are considered in sequence, with each one being aligned

with some word in the target sentence. This alignment is conditioned on the position to which

the previous source word was aligned (as well as the translation probability of the alignment under

consideration); thus, the sequence of alignment indices in the target sentence can be viewed as the

sequence of hidden states, and this model is therefore a first-order HMM. Thus, for Portuguese

sentence p and English sentence e, a set a of alignments is defined to have the following probability:

p(a|p, e) =

le
∏

j=0

t(ej |pa(j))d(a(i)|i, le , lp, a(i− 1)) (2.9)

where a(i) is the index of the word in e to which pi is aligned, le is the length of the English sentence,

and lp is the length of the Portuguese sentence.

Thus, this model is basically equivalent to IBM Model 2, except for two differences: (i) IBM

Model 2 uses absolute positions to condition its alignment probabilities, while the HMM uses relative

positions; and (ii) IBM Model 2 does not consider previous alignments (which could be described

by calling IBM Model 2 a zeroth-order HMM) while the HMM considers one previous alignment



(meaning that it is a first-order HMM). The HMM generally performs better than IBM Model 2, so

it is conventionally used in place of Model 2 in the implementation of word alignment algorithms.

2.1.3 Phrase-based machine translation

When word alignment (whether conducted using the IBM Models, an HMM, or some other method)

is used as the basis of a machine translation system, the overall machine translation system is referred

to as word-based machine translation because it focuses on taking each word in the source sentence

and figuring out what to do with it in the target sentence (whether to delete it, what to translate

it as, where to move it, etc.). However, there are newer techniques called phrase-based machine

translation, described in Koehn et al. (2003), Och and Ney (2004), and others, which considers

the translation of entire phrases rather than individual words, where a phrase is given the loose

definition of any sequence of words, meaning that, for example, ran into the is a phrase for the

purposes of phrase-based machine translation even though no syntactician would call it a phrase.

Phrase-based methods generally outperform word-based methods, and they also eliminate much of

the clunkiness of the IBM Models; for example, in a word-based model, the fact that the English

word hello can be translated into the two-word German phrase guten Tag must be expressed in the

convoluted way of having a high probability that the fertility of hello will be two and by having

high alignment probabilities between hello and guten and between hello and Tag. However, in a

phrase-based system, all of that complexity is collapsed by simply assigning a high probability to

the translation of the one-word English phrase hello and the two-word German phrase guten Tag.

The algorithm developed in this paper is aimed specifically at word alignment, and thus it

currently applies mainly to word-based machine translation. However, the method of using a pivot

language may well be extendible into phrase-based techniques as well.

2.1.4 Neural machine translation

In recent years, neural networks have gained great popularity as a way to create a streamlined, end-

to-end machine translation system (e.g. Collobert and Weston. (2008), Cho et al. (2014), Bahdanau et al.

(2015)). Neural machine translation often makes use of encoder-decoder networks, which consist of

an encoder component that encodes a sequence of inputs (in this case, a sequence of words or even

of characters) into an intermediate representation, as well as a decoder component which uses the

intermediate representation to generate an output sequence of words (or characters) in the target

language. This approach has proven to be quite successful, and it also to some extent realizes the

long-dreamt-of interlingua approach to translation (with which there is some intermediate language

called an interlingua to which any other language can be translated and from which any other

language can be generated) since the encoded input can in theory be fed to a decoder that gen-

erates text in any output language. However, neural machine translation is not very conducive to

the pivot language techniques discussed here because the pivot language techniques require you to

open the hood of the translation program and change some parameters, and neural networks are

not conducive to such tinkering. Finding a way to integrate these pivot-based methods with neu-

ral techniques may be a fruitful direction for future research given the typically high performance

exhibited by neural networks.



2.2 The problem: alignment without training data

All of the previously-discussed approaches to word alignment and machine translation depend cru-

cially on having large quantities of parallel bilingual text in the two languages of interest. Even

for the languages for which much data is available, obtaining parallel bilingual text is not always

easy because most linguistic data available is monolingual; thus it is only for the most high-resource

languages that enough data is available to create a high-performing machine translation. For the

several thousand languages that do not meet this criterion, it is very difficult to achieve good trans-

lation quality. For many languages, there is barely any data on which to build even a rudimentary

translation system. Thus, the question that I address in this paper is how to deal with data shortages

in such scenarios.



Chapter 3

Proposal: Pivot-based word alignment

3.1 Outline

My proposal for tackling the task of word alignment when one of the languages is low resource but

the other is high-resource is outlined in Figure 3.1. The idea is to first choose a pivot language that

will ideally fulfill two criteria: (i) It should be closely related to the low-resource language and (ii)

it should be high-resource, in the sense that a reasonably large bilingual corpus exists containing

text in the pivot language and in the high-resource target language. By having it be related to the

low-resource language, we can use it to infer information about the low-resource language; and by

having it be high-resource, we ensure that we have enough information about it to overcome the

data shortage of the low resource language.

Figure 3.1: Outline of the proposal.

Now that we have chosen the pivot language, we need some way to move from the low-resource

language to the pivot language and also some way to move from the pivot language to the high-

resource language. In order to move from the low-resource language to the pivot language, I will

use edit distance, which quantifies the similarity between strings. By using this technique, I can

find which words in the pivot language are likely cognates of the words in our low-resource sentence,

which allows for a rough translation into the pivot language. To move from the pivot language to the

high-resource language, I will be using probabilities derived from the IBM Models, as with standard

10



IBM word alignment, because the fact that both the pivot language and the high resource language

are high resource means that there will be enough data to calculate these probabilities. There are

thus three major components of my model−the pivot language, the edit distance algorithm, and the

implementation of the IBM models−and in the experiments section I will test various options for

each of these. First, however, I will go through a brief, general example of the algorithm to make

its usage clearer.

3.2 Example

Consider the following example, reproduced from (1) and originally from Gerdts and Whaley (1991):

(2) a. Ikárámu
pen

umukoôbwa
girl

a-ra-andik-a
she-pres-write-asp

íbárúwa
letter

nziza
good

ná
with

yo.
it

‘The pen, the girl is writing a nice letter with it.’

b. Ikárámu umukoôbwa araandika íbárúwa nziza ná yo

The pen, the girl is writing a nice letter with it

(2a) shows a sentence in Kinyarwanda as well as its translation, while (2b) shows the word alignment

between the Kinyarwanda sentence and the English sentence. Suppose that you had been given (2a)

and wished to generate the alignment in (2b). This would be done as follows:

• First, identify a pivot language to act as an interface between Kinyarwanda and English. In

this case, I choose Swahili, as it is related to Kinyarwanda (they are both Bantu languages) and

it is much higher-resource than Kinyarwanda, since it is a language of international commerce.

• Now, consider each Kinyarwanda word in turn. Thus, we would first consider the word ikárámu

“pen." Go through all words in the Swahili vocabulary to find the Swahili words that have the

smallest edit distance from ikárámu. Suppose that the two closest Swahili words found are

karamu “feast" and kalamu “pencil, pen."

• Now consider each pairing of one of those Swahili words (karamu and kalamu) with one of the

English words in the English sentence and find which pair is most likely to be translations of

each other (using the translation probabilities calculated by training the IBM models on some

bilingual Swahili/English text). This procedure would find that (kalamu, pen) is a very likely

pairing, while no other pairs are very likely.

• Since pen was the English word that yielded the most likely match for our Kinyarwanda

word’s Swahili proxy, we now draw the alignment between ikárámu and pen and then proceed

through the rest of the sentence until all of the Kinyarwanda words have been aligned.

This will be the basic framework used for all of the experiments in the following chapter, but

many variations on the exact parameters will be tried.



Chapter 4

Experiments

4.1 The languages

For all experiments, the specific task I will tackle is alignment between Spanish and English. Al-

though Spanish is an extremely high-resource language in real life, for these experiments I will be

simulating low-resourcedness by not providing the computer with any Spanish training data; thus,

the only Spanish that the computer will be exposed to is test data. I chose this path rather than

using a truly low-resource language because it is much easier to create a gold standard alignment

set (from which one can evaluate experimental success) for a high-resource language. As in real life,

English will be treated as a high-resource language in these experiments. As for pivot languages,

seven different languages will be tested as potential high-resource pivot languages: Danish, Finnish,

French, German, Italian, Portuguese, and Spanish.

4.2 The corpus

Conducting an alignment task requires access to a parallel corpus−that is, the same text written

in multiple languages. One popular source of parallel corpora is the proceedings of governmental

organizations that conduct their business in multiple languages. For example, much early work

in machine translation (e.g., Gale and Church (1993), Chen (1993)) made use of the Canadian

Hansards corpus, which contains the Canadian parliament’s proceedings in both French and English.

Such a government-derived corpus is attractive for several reasons: It is freely available; its two

aligned components are likely to correspond closely in meaning since they were both generated from

the same utterance by a parliament member; and it contains a relatively large quantity of data.

Both for training data and for test data, all experiments used the Europarl parallel corpus,

another government-based corpus that was created by Koehn (2005). This corpus comes from the

proceedings of the European Parliament, a governing body of the European Union. Because of

the multinational nature of this body, its proceedings are available in the languages of many EU

member states, and thus these proceedings are useful for a project that explores alignments between

more than one pair of languages.

Several of the languages involved in this study use characters beyond the 26 letters used in

12



Portuguese English

comunico à assembleia que , no final do de-

bate , recebi duas propostas de resolução .

i inform the house that at the end of the de-

bate i have received two motions for resolu-

tions .

por razões de ordem técnica , estas propostas

de resolução não poderão , de modo nenhum

, ser votadas durante a presente sessão .

for technical reasons , these motions for reso-

lutions can not in any case be put to the vote

during this round of voting .

segue-se o período dedicado às intervenções

dos deputados que pedem a palavra .

we come to the time for speeches by those

members who ask to speak .

como sabem , essas intervenções estão limi-

tadas a um minuto .

as you know , they are limited to one minute

each .

senhor presidente , gostaria de o informar que

a empresa produtora de enchidos igloomeat

sa sokołów polska pediu para ser retirada do

anexo xii do tratado de adesão .

mr president , i should like to inform you that

the salami producer igloomeat sa sokołów

polska has asked to be deleted from appendix

12 to the treaty of accession .

Table 4.1: Example sentence pairs from the Portuguese/English training set.

English. In the corpus, accented Roman characters are encoded as the plain Roman character plus

a separate character indicating the accent. This means that, for example, the deletion of an accented

vowel would be counted as the deletion of two characters when computing Levenshtein distance.

4.2.1 Training sets

The Europarl corpus is available in the form of twenty different language pairs, where each pair

consists of English plus some other European language. Different experiments that I ran made use

of different language pairs; the language pairs that were used for training were Spanish/English, Por-

tuguese/English, French/English, Italian/English, German/English, Danish/English, and Finnish/English,

while the remaining 13 languages in the corpus were not used in this project. Each training set

was lowercased and tokenized before training, and each training set consists of 1 million parallel

sentences. Table 4.1 shows a portion of the Portuguese/English training data.

4.2.2 Test set

The test set remained constant across all experiments and consisted of 1,000 lowercased and tok-

enized parallel sentence pairs from the Spanish/English component of the Europarl corpus. (Note

that all training corpora were filtered so as not to include any sentences that are in the test set).

The test set also contains a gold standard set of alignments from the NAACL 2006 shared task on

statistical machine translation, available at http://www.statmt.org/wmt06/shared-task/. These

gold standard alignments were generated using automatic methods (the exact methods are not

stated), so they can be expected to contain some errors, which makes this test set not ideal for

assessing performance on this task of word alignment. However, for my purposes, this training data

http://www.statmt.org/wmt06/shared-task/.


Spanish English Alignments

considero muy importante que

nos hagamos conscientes de

que la movilidad social y la in-

tegraciûn de la poblaciûn eu-

ropea debe ir acompañada de

una armonizaciûn del derecho

.

i believe it is very important

that we remind ourselves that

social mobility and the inte-

gration of the people of europe

must be accompanied by har-

monisation of the law .

0-0 0-1 0-2 1-4 2-5 3-6 4-7 5-8

5-9 6-8 8-10 9-12 10-12 11-11

12-13 13-14 14-15 15-16 16-17

17-18 18-20 19-21 20-22 21-23

21-24 22-24 23-25 24-25 25-26

25-27 26-28 27-29

por ello debe existir una buena

colaboraciûn entre las au-

toridades responsables de la

polìtica presupuestaria y del

banco central europeo , que al

fin y al cabo es quien deter-

mina los tipos de interès .

therefore , good cooperation

must be brought about be-

tween the governments who

are responsible for budget pol-

icy and the european central

bank , which ultimately deter-

mines interest rates

0-0 1-0 2-4 3-5 3-6 4-7 5-2 6-3

7-8 8-9 9-10 10-11 10-12 10-13

11-14 13-16 14-15 15-17 16-18

17-21 18-20 19-19 20-22 21-23

22-24 23-24 24-24 25-24 26-24

27-12 28-11 29-25 30-27 31-27

32-27 33-26 34-28

apruebo las orientaciones que

se nos proponen .

i am in favour of the proposed

guidelines .

0-0 0-1 0-2 0-3 0-4 1-5 2-7 4-6

5-6 6-6 7-8

Table 4.2: Example sentence pairs and their alignments from the English/Spanish test set.

is sufficient because the small levels of inaccuracy associated with the automatic errors in preparing

this test set are not significant in the context of a low-resource NLP challenge.

Table 4.2 shows 3 of the test Spanish/English sentence pairs and their gold-standard alignments.

Each alignment is a list of pairs of numbers, where the first element of the pair is an index in the

Portuguese sentence while the second element is an index in the English sentence. Having two

indices occur together in one of these pairs means that the words at those indices are aligned. For

example, in the bottom row of the table, the Spanish word apruebo (at index 0) is aligned with each

of the first 5 English words (composing the string of words i am in favor of in indices 0 through 4).

4.3 Measuring success

In NLP tasks, it often is not very clear how to quantify success; for example, in the task of machine

translation, the fact that each sentence usually has many possible translations into another language

makes it difficult to assess how correct a given translation is. Luckily, however, word alignment is

one of the NLP tasks that does have very easy-to-quantify results. I will use three quantitative

measures of the performance of each program (namely, precision, recall, and alignment error rate),

which are described below.

4.3.1 Precision

Precision is the proportion of alignments predicted by the program that are present in the gold

standard. It is calculated with the following formula:



precision =
number of predicted alignments that are correct

number of predicted alignments
(4.1)

Precision falls within the range of 0 to 1, where it is best to be as close to 1 as possible.

4.3.2 Recall

Recall is the proportion of alignments present in the gold standard that are predicted by the program.

It is calculated with the following formula:

recall =
number of predicted alignments that are correct

number of correct alignments
(4.2)

Recall falls within the range of 0 to 1, where it is best to be as close to 1 as possible.

4.3.3 Alignment error rate

Precision and recall are somewhat in opposition: It is easy to achieve a high precision simply by

not predicting very many alignments, while it is easy to achieve a high recall by predicting far too

many alignments. To reconcile these competing behaviors, a third metric is used which balances

precision and recall. It is called alignment error rate (AER), and it is calculated with the following

formula:

AER = 1−
2(number of predicted alignments that are correct)

number of correct alignments + number of predicted alignments
(4.3)

AER falls within the range of 0 to 1, where it is best to be as close to 0 as possible.

4.4 Baselines

The following tests are meant to give some basis for understanding what the performance numbers

mean for the main tests.

4.4.1 Lower-bound baselines

These baselines are two of the simplest possible alignment algorithms that could be used. Thus,

any word alignment program worth its salt should definitely outperform these two (luckily, that’s

not a very high bar).

Random alignment

Random alignment consists of, for each word in the input, aligning it at random with one word in

the output.



Diagonal alignment

When aligning a Spanish sentence with an English sentence, let l be the length of the shorter of the

two sentences. Diagonal alignment is defined as aligning the ith English word with the ith Spanish

word for every i ≤ l. (If the sentences are of unequal length, this means that some words at the

end of the longer sentence will be unaligned; this procedure could be implemented differently such

that those excess words are, for example, all aligned with the last word in the other sentence). It

is called diagonal alignment because, in the charts commonly used to depict word alignment (e.g.

in Figure 4.1) such an alignment appears as a diagonal line from the upper left hand corner to the

lower right hand corner.

4.4.2 Upper-bound baselines

The following alignment methods aim to estimate the upper bound of how well a program could

perform on the data.

Using Spanish as a pivot language

We would expect the highest-performing pivot language to be Spanish itself, so we can use Spanish

as a pivot language to estimate how well the ideal pivot language would perform. (See Section 4.7

for more details on the experiments dealing with different pivot languages).

Alignment with fast-align

Finally, I used the state-of-the-art word aligner program fast-align, developed as part of the cdec

package (Dyer et al. 2010), to train an alignment program on the entire 1 million sentence Spanish-

English training corpus, to generate what can be thought of as the best possible word alignments

that could be achieved from the given datasets (since this program is state-of-the-art).

4.4.3 Baseline results

The results of these baselines are summarized in Table 4.3. The most important statistic is the

alignment error rate, and from these results we can see that a reasonable range for the performance

of a word alignment system on this data would be somewhere in the range from 0.360 to 0.819, since

even a very naive method can achieve 0.819 while even the best-case method does not do better

than 0.360. The fact that the diagonal alignment performs so much better than random is mainly

due to the fact that English and Spanish have broadly similar word orders (for example, both are

subject-initial), so a lot of low-hanging fruit can be grabbed by assuming that the English and

Spanish words are in the same order. Thus, if our language pair differed more in high-level syntax

(for example, if one language were OVS and the other VSO), then the diagonal alignment would

likely work significantly less well. The fast-align performance of 0.288 can be considered a rough

upper bound for performance. 0 is the theoretically best AER that can be achieved, but there are

a few reasons why the best-case scenario is so far from 0. First, though this data set is moderately

large, it is still not large enough to reach the truly state-of-the-art performance of systems trained



Method Precision Recall AER

Random 0.056 0.049 0.948

Diagonal 0.203 0.163 0.819

Spanish as pivot 0.682 0.602 0.360

fast-align 0.744 0.683 0.288

Table 4.3: Results of baseline alignments.

on more data. Second, and perhaps more importantly, the test set is not actually a gold standard;

its alignments have been generated by automatic methods, not by humans, so these alignments may

well be wrong in places. Indeed, the task of word-alignment is not always clear cut, so even in

human-generated data there would be some level of indeterminacy. This is why, even though the

theoretical range of AER values is 0 to 1, a more practical range to keep in mind when assessing

the results that follow would be 0.360 to 0.819.

4.5 Edit distance experiments

I tested several different methods for measuring edit distance. Sections 4.5.1 through 4.5.4 describe

these different methods, and Section 4.5.5 discusses the results.

4.5.1 Levenshtein edit distance

The first edit distance metric that I used was the standard Levenshtein edit distance (Levenshtein

1966; Wagner and Fischer 1974). Levenshtein edit distance focuses on three possible operations

that can be performed on a string of characters:

1. Insertion: The insertion of a new character into the string.

2. Deletion: The deletion of a character already present in the string.

3. Substitution: The substitution of some new character for a character already in the string.

The Levenshtein edit distance between two words w1 and w2 is then defined as the total number

of insertions and/or deletions and/or substitutions that must be made to transform w1 into w2.

Table 4.4 contains some examples of word pairs and the Levenshtein edit distance (distL(w1, w2))

between them. In addition, to show how this algorithm works in the context of the actual data,

Table 4.5 shows a few Spanish words in the test set along with the four Portuguese words from the

Portuguese training set that have the smallest edit distance from the Spanish word.

Note that there are many possible ways to transform one string into another (in fact, there are

infinitely many ways). For example, emanate could be turned into manatee by substituting an m

for the first e, then substituting an a for the m, then substituting an n for the a, then substituting

an a for the n, then substituting a t for the a, then substituting an e for the t−making a total of

6 operations. However, the same transformation could instead be effected by deleting the initial e

and adding an e at the end, which is only two operations. Therefore, note that whenever I refer



w1 w2 distL(w1, w2) Operations performed

stephen king stephen hawking 3 insert(h), insert(a), insert(w)

lemony snicket jiminy cricket 5 sub(l, j), sub(e, i), sub(o, i), sub(s, c), sub(n, r)

lewis black louis ck 5 sub(e, o), sub(w, u), del(b), del(l), del(a)

jim carrey john kerry 6 sub(i,o), insert(h), sub(m, n), sub(c, k), sub(a, e), del(e)

Table 4.4: Examples of Levenshtein edit distance.

Spanish word Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades ‘cities’ cidades (1) ciudad (2) saudades (2) idades (2)

‘cities’ ‘city’ ‘miss’ ’ideas’‘

seis ‘six’ seis (0) sei (1) deis (1) leis (1)

‘six’ ‘know’ ‘you are’ ‘laws’

ocasiona ‘causes’ ocasiona (0) ocasione (1) ocasional (1) ocasionam (1)

‘causes’ ‘occasion’ ‘casual’ ‘occasion’

otro ‘other’ ouro (1) outro (2) otros (1) oro (1)

‘gold’ ‘other’ ‘other’ ‘gold’

arriesgarnos ‘to risk’ arriscarmos (3) arriscar-nos (3) arrastarmos (4) apressarmo (4)

‘to risk’ ‘to argue’ ‘drag’ ‘hurry up’

Table 4.5: Examples of Levenshtein neighbors (distances from the Spanish words are in parentheses)

.



to the edit distance between two strings in this paper, it is intended to refer to the minimum edit

distance between them−so in this case distL(emanate,manatee) = 2.

For this edit distance experiment, as with all edit distance experiments in this section, the

pivot language is Portuguese and the model for alignment probability is simply the IBM Model 1

translation probabilities. In addition, in order to compare edit distance algorithms under stricter

conditions, I am stipulating that the only Portuguese word to consider is the first choice in terms

of the closest Levenshtein neighbor to the Spanish word under consideration.

4.5.2 Feature-based edit distance

This section details two approaches to edit distance in which the basic aim is to alter the penalties

associated with the Levenshtein operations of insertion, deletion, and substitution based on the

phonological properties of the characters involved.

The assumption underlying this method is that, when two cognates differ in some of the

phonemes they contain, they are likely to differ in phonologically sensible ways. For example,

it is more likely that one cognate will contain a d where its partner contains a t than it is for one

cognate to contain a d where the other contains a u. If this assumption is true, an edit distance al-

gorithm that encodes some phonological information may be more successful at identifying cognates

than the basic Levenshtein algorithm.

Vowel/consonant approach

In this model, the penalty for substituting a vowel for a consonant, or for substituting a consonant

for a vowel, is greater than that for substituting a vowel for a vowel or for substituting a consonant

for a consonant. Specifically, this model works almost exactly like the basic Levenshtein−with

a penalty of 1 for an insertion or a deletion or for a substitution that does not change a vowel

to a consonant or vice versa−but the penalty for substituting a vowel for a consonant (or vice

versa) is modified to be greater than one. Table 4.6 shows some examples of the closest Portuguese

neighbors of a few words in the Spanish test set where the vowel/consonant method is used, which

a vowel/consonant substitution penalty of 2 and a penalty of 1 for all other operations.

More features

In this model, the penalty for any operation is (in theory) set to be equal to the number of phono-

logical features that change when that operation occurs. For example, substituting a d for a t incurs

a penalty of 1 because a single feature (namely, voicing) has changed, while substituting a b for a t

incurs a penalty of 2 because a two features (namely, voicing and place) have changed. In practice,

it is impossible to enact this approach rigorously because of the fact that orthography does not map

cleanly to phonology and does not have consistent phonological properties across languages; that

is, it is impossible to definitively state what phonological features a given character possesses, and

because of that it is impossible to determine exactly how many features change in a given operation.

Therefore, many of the weights that ended up being used for this method were somewhat hand-

wavy. Table 4.7 shows the weights used for all substitutions; meanwhile, each insertion or deletion



Spanish word Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades ‘cities’ ciedade (2) cidades (2) saudades (2) idades (3)

‘capital’ ‘cities’ ‘miss’ ’ideas’‘

seis ‘six’ seis (0) sais (1) deis (1) reis (1)

‘six’ ‘salts’ ‘you are’ ‘kings’

ocasiona ‘causes’ ocasiona (0) ocasione (1) ocasional (1) ocasionam (1)

‘causes’ ‘occasion’ ‘casual’ ‘occasion’

otro ‘other’ otto (1) oro (1) otros (1) coro (2)

‘otto’ ‘gold’ ‘other’ ‘choir’

arriesgarnos ‘to risk’ arriscarmos (4) arriscar-nos (4) arrastarmos (5) apressarmos (5)

‘to risk’ ‘to argue’ ‘drag’ ‘hurry’

Table 4.6: Examples of vowel/consonant neighbors (distances from the Spanish words are in paren-

theses) .

was given a weight of 3 (under the assumption that each character has roughly three major features,

and thus inserting or deleting that character amounts to inserting or deleting three features). Table

4.8 shows some examples of the closest neighbors of a few Spanish words when using this method

to compute edit distance.

4.5.3 Embedding-based edit distance

Embedding-based edit distance works by creating an embedding for each character (that is, a

vector that represents the character). Once such embeddings have been created, characters can be

compared by determining the cosine between their respective embedding vectors, which is given by

the following equation:

cosdist(c1, c2) =
~c1 · ~c2

||~c1|| ||~c2||
(4.4)

where ~c1 and ~c2 are the vector embeddings of c1 and c2. The penalty for substituting c1 for

c2 is defined as cosdist(c1, c2)
−1 (the negative exponent is there because the cosine is greater for

more similar vectors, whereas we want a smaller penalty for more similar vectors), while I tried two

different methods for determing the penalty for inserting or deleting character c1:

• Average method: The penalty for inserting or deleting c1 is the average of all substitution

penalties; this can be expressed as

∑
c1,c2

cosdist(c1,c2)

||C|| , where is C is the alphabet.

• Ngram method: For this method, in addition to having embeddings for all the characters,

an embedding is also created for the empty character ǫ. The penalty for inserting or deleting

character c1 is then cosdist(c1, ǫ).



a b c d e f g h i j k l m n o p q r s t u v w x y z

a 0 4 4 4 1 4 4 4 1 4 4 4 4 4 1 4 4 4 4 4 1 4 4 4 2 4

b 4 0 2 1 4 3 1 3 4 2 2 2 1 2 4 2 2 2 3 2 4 2 2 3 2 2

c 4 2 0 2 4 2 1 2 4 3 1 3 3 3 4 1 3 3 2 1 4 1 3 3 2 2

d 4 1 2 0 4 3 1 3 4 2 2 2 2 1 4 2 2 2 3 2 4 2 2 3 2 2

e 1 4 4 4 0 4 4 4 1 4 4 4 4 4 1 4 4 4 4 4 1 4 4 4 2 4

f 4 3 2 3 4 0 3 1 4 3 2 3 3 3 4 2 3 3 2 2 4 1 3 3 2 3

g 4 1 1 1 4 3 0 3 4 2 1 2 2 2 4 2 3 2 3 2 4 2 3 3 2 2

h 4 3 2 3 4 1 3 0 4 2 1 2 2 2 4 2 3 3 1 2 4 3 3 3 2 2

i 1 4 4 4 1 4 4 4 0 4 4 4 4 4 1 4 4 4 4 4 1 4 4 4 2 4

j 4 2 3 2 4 3 2 2 4 0 3 2 2 2 4 3 3 2 3 3 4 2 3 3 2 2

k 4 2 1 2 4 2 1 1 4 3 0 3 3 3 4 1 2 3 2 1 4 3 3 3 2 3

l 4 2 3 2 4 3 2 2 4 2 3 0 2 1 4 3 3 1 3 2 4 2 1 3 2 1

m 4 1 3 2 4 3 2 2 4 2 3 2 0 1 4 2 3 2 3 3 4 2 1 3 2 2

n 4 2 3 1 4 3 2 2 4 2 3 1 1 0 4 3 3 2 3 2 4 2 2 3 2 1

o 1 4 4 4 1 4 4 4 1 4 4 4 4 4 0 4 4 4 4 4 1 4 4 4 0 4

p 4 2 1 2 4 2 2 2 4 3 1 3 2 3 4 0 3 3 2 1 4 3 3 3 2 3

q 4 2 3 2 4 3 3 3 4 3 2 3 3 3 4 3 0 3 3 3 4 3 3 3 2 3

r 4 2 3 2 4 3 2 3 4 2 3 1 2 2 4 3 3 0 3 3 4 3 2 3 2 2

s 4 3 2 3 4 2 3 1 4 3 2 3 3 3 4 2 3 3 0 1 4 2 3 2 2 1

t 4 2 1 2 4 2 2 2 4 3 1 2 3 2 4 1 3 3 1 0 4 3 3 3 2 2

u 1 4 4 4 1 4 4 4 1 4 4 4 4 4 1 4 4 4 4 4 0 4 4 4 0 4

v 4 2 1 2 4 1 2 3 4 2 3 2 2 2 4 3 3 3 2 3 4 0 1 3 2 3

w 4 2 3 2 4 3 3 3 4 3 3 1 1 2 4 3 3 2 3 3 4 1 0 3 2 3

x 4 3 3 3 4 3 3 3 4 3 3 3 3 3 4 3 3 3 2 3 4 3 3 0 2 2

y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2

z 4 2 2 2 4 3 2 2 4 2 3 1 2 1 4 3 3 2 1 2 4 3 3 2 2 0

Table 4.7: Penalties for feature-based edit distance.



Spanish word Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades ‘cities’ cidades (3) vaidades (3) saudades (3) cuidadas (3)

‘cities’ ‘vanities’ ‘miss’ ’cared for’

seis ‘six’ seis (0) sais (1) seus (1) sois (1)

‘six’ ‘salts’ ‘their’ ‘you are’

ocasiona ‘causes’ ocasiona (0) ocasione (1) ocasional (3) ocasionam (3)

‘causes’ ‘occasion’ ‘casual’ ‘occasion’

otro ‘other’ adro (2) oslo (2) otto (3) oro (3)

‘churchyard’ ‘oslo’ ‘ottor’ ‘gold’

arriesgarnos ‘to risk’ arriscarmos (5) arriscar-nos (7) arrastarmos (7) arriscaremos (8)

‘to risk’ ‘to argue’ ‘drag’ ‘I will risk’

Table 4.8: Examples of feature-based neighbors (distances from the Spanish words are in parenthe-

ses) .

For these tests, all characters beyond the 26 Roman letters were collapsed into a single ’OTHER’

character, whose embedding was calculated as if it were one consistent character. I tested two

different approaches to generating embeddings, described below.

These embedding-based edit distances are founded upon two assumptions: First, as with the

feature-based edit distance methods in Section 4.5.2, these methods assume that, across a pair of

cognates, it is more likely to substitute one character for a character phonologically similar to it than

for a character that is not very phonologically similar to it. Secondly, the embedding-based methods

make the further assumption that the distribution of a character can give an accurate portrayal of

the character’s phonological nature. Distributional facts certainly can shed light on the phonological

properties of a speech sound; for example, Peperkamp et al. (2006) created an algorithm that was

highly effective at determining which sounds were allophones vs. distinct phonemes based on the

distributions of those sounds. Despite this success, however, it is not necessarily the case that

distributional evidence extends its utility to the task of cognate determination.

Count-based embeddings

In this method, the creation for the embedding of a character c begins by considering every oc-

currence of c in the training set and by looking at the other characters that occur near c in these

occurrences within a window of a certain size (I tested two different window sizes−a window of size

3, meaning just c and the two characters immediately adjacent to it, and a window of size 5, meaning

c as well as two characters on either side). The embedding for c is then a vector with dimensionality

equal to the number of characters in the character set and with the dimension corresponding to

character c′ equal to the number of times that c′ occurs within the window of characters near c

in the training data. The embedding for the empty character ǫ (which is needed when the ngram

method for assigning insertion/deletion penalties is used) is created by imagining that it occurs

between every two characters in the training set and creating its distributional vector accordingly.



Ten most similar pairs Ten least similar pairs Selected other pairs

(d,m) 0.973 (q,x) 0.082 (m,n) 0.825

(a,o) 0.970 (e,x) 0.098 (d,t) 0.779

(a,e) 0.967 (o,x) 0.128 (s, t) 0.714

(k,w) 0.965 (a,x) 0.141 (n,t) 0.745

(e,o) 0.964 (i,q) 0.211 (f,v) 0.888

(l,r) 0.957 (h,q) 0.225 (m,g) 0.884

(m,r) 0.954 (q,v) 0.227 (o,t) 0.475

(d,w) 0.951 (q,u) 0.254 (a,n) 0.462

(c,f) 0.945 (e,z) 0.254 (s,g) 0.732

(d,f) 0.945 (t,q) 0.278 (b,l) 0.851

Table 4.9: Selected substitution edit distances as determined using a window of 3 with the count-

based method.

Table 4.9 shows some of the cosine similarities between characters that were derived using the re-

sulting embeddings, and Table 4.10 shows some examples of the closest Portuguese neighbors to

selected Spanish words under this formalism. The weights illustrated in Table 4.9 do seem to make

at least some phonological sense, but the weights certainly are messy and are far from a perfect

representation of phonological relatedness. For example, m and g are deemed more similar under

this system than d and t, and s is judged to be more similar to g than to t.

char2vec-based embeddings

Inspired by the great success of the word2vec algorithm from Mikolov et al. (2013) at creating

semantically sensible embeddings for words, I apply the word2vec algorithm to characters in an at-

tempt to create phonologically sensible embeddings for words. By analogy with the name word2vec,

I refer to this technique as char2vec. Like the count-based embedding method described above, the

char2vec algorithm begins by considering a window of a fixed size around every instance of character

c; again, I tested windows of size 3 and 5. For word2vec, larger windows are typically used, but given

how many fewer characters there are than there are words, a smaller window size seemed sensible

for the char2vec experiments because, unlike with word2vec, the cooccurrence vectors for char2vec

are not at all sparse and thus there is little need to look farther away from the target character to

further populate the cooccurrence vector. It could potentially be desirable to use a larger window

to capture long-distance phonological dependencies such as vowel harmony, but I do not attempt

this here.

Once the desired windows around different occurrences of c have been established, then a neural

network is used to generate the vector embedding for c. The neural network used is a simple, feed-

forward network with an input layer and an output layer both having dimensionality equal to the

number of characters in the character set, and with a single hidden layer of dimensionality 16. The

network is then trained using either the continuous bag of words (CBOW) method1 or the skip-

1I am not quite zealous enough to start calling this the CBOC (continuous bag of characters) method.



Spanish

word

Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades

‘cities’

miudezas (8.36) firmadas (8.58) causadas (8.58) firmados (8.58)

‘offal’ ‘signed’ ‘caused’ ’signed’

seis ‘six’ seis (4) sais (4.03) sois (4.04) deis (4.07)

‘six’ ‘salts’ ‘you are’ ‘you are’

ocasiona

‘causes’

ocasiona (8) ocasione (8.03) emociona (8.30) avaliara (8.57)

‘causes’ ‘occasion’ ‘excited’ ‘evaluate’

otro ‘other’ etna (4.17) evro (4.23) otto (4.25) erro (4.29)

‘etna’ ‘will’ ‘etna’ ‘error’

arriesgarnos

‘to risk’

apreendermos (13.26) enfrentarmos (13.76) estipularmos (13.78) omnipotentes (8.37)

‘grasped’ ‘face’ ‘stipulate’ ‘omnipotent’

Table 4.10: Examples of count-based neighbors (distances from the Spanish words are in parenthe-

ses) .

gram method. In both methods, the network is trained on input/output pairs where both the input

and the output consist of one-hot vectors that each represent a single character. In the CBOW

method, the input one-hot vector represents one of the characters within the window of the target

character while the output one-hot vector represents the target character, whereas the skip-gram

method swaps which character is the input and which is the output. Once the network finishes

training, the trained weight matrix used to transition from the input layer to the hidden layer is

used to generate the embeddings for all of the characters. Specifically, for the character at index i

in the input vector, its embedding will be row i of the weight matrix.

Table 4.11 shows some of the cosine similarities between characters that were derived using the

resulting embeddings, and Table 4.12 shows some examples of the closest Portuguese neighbors to

selected Spanish words under this formalism. As with the count-based weights in Table 4.9, these

weights overall seem roughly sensible, but there are some weights that seem not to have make much

phonological sense; for example, s and t are not deemed to be very similar under this system.

4.5.4 Cognate-based edit distance

The embedding-based methods in the previous section all derive their embeddings from a single

training language (which was Portuguese in the examples given). Here I try a different method

that utilizes some cross-linguistic information from three relatives of Spanish, namely Portuguese,

Italian, and French (it remains the case that no Spanish data is being used to train). The idea

behind this approach is to identify cognates amongst Portuguese, Italian, and French and to use

those cognates to determine which phonological differences are likely to be present in cognate pairs



Ten most similar pairs Ten least similar pairs Selected other pairs

(l,r) 0.967 (i,q) -0.152 (m,n) 0.681

(d,m) 0.949 (n,q) -0.091 (d,t) 0.644

(m,r) 0.941 (h,q) -0.091 (s, t) 0.396

(l,m) 0.924 (q,u) -0.071 (n,t) 0.563

(a,e) 0.923 (q,v) -0.023 (f,v) 0.874

(e,o) 0.923 (p,x) -0.019 (m,g) 0.850

(v,z) 0.921 (b,q) -0.015 (o,t) 0.339

(l,z) 0.921 (q,x) -0.013 (a,n) 0.455

(r,d) 0.910 (q,w) -0.005 (s,g) 0.537

(l,g) 0.907 (r,q) 0.020 (b,l) 0.797

Table 4.11: Selected substitution edit distances as determined using a window of 3 with the CBOW

method.

Spanish word Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades ‘cities’ causados (4.05) saudades (4.05) causadas (4.06) saudados (4.06)

‘caused’ ‘miss’ ‘casued’ ’greeted’

seis ‘six’ seis (0) sois (2.01) sais (2.01) deis (2.02)

‘six’ ‘you are’ ‘salts’ ‘you are’

ocasiona ‘causes’ ocasiona (0) ocasione (4.01) emociona (4.06) adiciona (4.08)

‘causes’ ‘occasion’ ‘excited’ ‘adds’

otro ‘other’ otto (2.02) evro (2.03) etna (2.03) erro (2.03)

‘otto’ ‘will’ ‘etna’ ‘error’

arriesgarnos ‘to risk’ arregalarmos (6.18) enfrentarmos (6.19) articularmos (6.19) apreendermos (6.19)

‘opened’ ‘face’ ‘articulate’ ‘seize’

Table 4.12: Examples of CBOW-based neighbors (distances from the Spanish words are in paren-

theses) .



and which are not.

The success of this approach depends on the assumption that the types of sound changes that

occur between some pairs of languages within a language family are similar to the types of sound

changes that occur between other pairs of languages in that language family. This assumption is by

no means necessarily true; indeed, each language pair will almost certainly have some systematic

sound changes between its members that are not represented in any other language pairs. However,

perhaps it is the case that there will be some broader trends that cut across many members of a

family.

The following criteria were used to generate training examples for this experiment; positive

examples were identified by finding any pairs (w1, w2) that satisfied criteria (i), (ii), (iii), and (iva),

while negative examples were identified by finding any pairs (w1, w2) that satisfied criteria (i), (ii),

(iii), and (ivb):

(i) w1 and w2 are from different languages.

(ii) The Levenshtein edit distance between w1 and w2 is greater than 0 but less than some specified

amount d.

(iii) Both w1 and w2 are at least four characters long.

(iv) a. The most likely English translation of w1 is the same as the most likely English translation

of w2.

b. The cosine similarity between the GloVe embeddings of the most likely English translation

of w1 and w2 is less than 0.5.

For criterion (i), the different languages that were considered were Portuguese, French, and

Italian, which are all of the Romance languages (besides the test language of Spanish) being con-

sidered in this paper. For criterion (ii), I ran the experiment both with d = 1 and with d = 2.

Criterion (iii) is included because a low Levenshtein edit distance does not mean much for very

short words−for example, any two two-letter words will have an edit distance of at most 2, but this

by no means implies that all two-letter words are cognates of each other. For criterion (iv), the most

likely English translation of a word is identified based on the IBM Model 1 translation probabilities

generated by running mgiza on the bilingual training sets. Finally, for criterion (ivb), I used the

GloVe embeddings from Pennington et al. (2014) as a metric for determinging semantic similarity;

words with a cosine similarity less than 0.5 tend not to be very semantically similar, so this crite-

rion is intended to ensure that the negative examples are not cognates despite being phonologically

similar, while criterion (iva) is intended to find positive examples by identifying words that both

appear phonologically similar and have similar meanings.

When d from criterion (ii) was specified to be 1, this criteria generated 8,718 positive examples

and 25,440 negative examples, while having d = 2 generated 27,744 positive examples and 448,746

negative examples. I restricted the number of negative examples to be equal to the number of

positive examples in each case, so that there ended up being both 8,718 positive examples and 8,718

negative examples when d = 1 and 27,744 positive examples and 27,744 negative examples when

d = 2. Table 4.13 shows some of the positive and negative example pairs generated when d = 1.



Word 1 Word 2

afgane (It.) afghane (Fr.)

“afghan" “afghan"

stupide (Fr.) stupido (It.)

“stupid" “stupid"

fortemente (It.) fortement (Fr.)

“strongly" “strongly"

indissociabile (It.) indissociable (Fr.)

“inseparable" “inseparable"

serviu (Port.) servi (Fr.)

“served" “served"

propague (Port.) propage (Fr.)

“spread" “spread"

discriminata (It.) discriminada (Port.)

“against" “against"

pressione (It.) pressionem (Port.)

“pressure" “pressure"

perdere (It.) perdre (Fr.)

“lose" “lose"

finali (It.) finale (Fr.)

“final" “final"

Word 1 Word 2

rendo (It.) lendo (Port.)

“realise" “reading"

colmando (It.) comando (Port.)

“closing" “command"

eternamente (It.) externamente (Port.)

“eternally" “externally"

monge (Port.) ronge (Fr.)

“monk" “plaguing"

ombros (Port.) ombres (Fr.)

“shoulders" “shadows"

paute (Port.) faute (Fr.)

“transparent" “fault"

marini (It.) martini (Fr.)

“marine" “martini"

verde (It.) verse (Fr.)

“paper" “pays"

mentis (It.) mentir (Fr.)

“mindset" “lie"

stelle (It.) telle (Fr.)

“stars" “such"

Table 4.13: Some of the examples used for training the cognate-based edit distance. The table on

the left shows positive examples (pairs deemed to be cognates), while the table on the right shows

negative examples (pairs deemed not to be cognates).
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Table 4.14: The architecture of the model used to train the penalties for the cognate-based edit

distance.

These examples were then used to train weights for each possible editing operation of insertion,

deletion, or substitution. There are 27 characters for which to learn weights (the 26 alphabetic

characters plus an OTHER character into which all other characters were collapsed); thus there

are
(

27
2

)

possible substitutions that can be made. Because it makes sense for these edit distances

to be symmetrical, it was deemed that the penalty for inserting a character should be the same as

the penalty for deleting that character, so there were also 27 possible insertion/deletion operations.

Thus, there are a total of
(27
2

)

+ 27 = 378 operations for which to learn weights. For learning

these weights, each training pair (w1, w2) was represented as a 378-dimensional vector, where each

dimension represented one of the possible string operations. This vector was a 1 at each dimension

where the corresponding operation occurred between w1 and w2 but 0 otherwise; this means that

each vector was 1-hot in the experiment where d = 1 or 2-hot in the experiment where d = 2 (except

that, in a few cases where d = 2, both operations that occurred were the same, in which case the

vector had one dimension equal to 2 and all the rest equal to 1).

These vectors were then used to train a neural network which consisted only of an input layer

and an output layer. The input layer consisted of the 378-dimensional vector representing a given

training pair, while the output layer was 1-dimensional and consisted of a 0 if the pair was a

positive example or a 1 if it was a negative example. This architecture is illustrated in Table 4.14.

The weights learned from training this network were then used as the penalties for each insertion,

deletion, or substitution operation when computing cognate-based alignment.

Table 4.15 shows some of the weights that were learned for substitution pairs, and Table 4.16

shows the closest Portuguese neighbors for several words in the Spanish test set, computed using

this cognate-based method.

4.5.5 Edit distance results

Results of experiments

Recall from Chapter 3 that there are three basic components that may be varied for my word

alignment approach, namely the edit distance algorithm, the pivot language, and the alignment

model. For all edit distance experiments, the pivot language was set to be Portuguese and the



Ten most similar pairs Ten least similar pairs Selected other pairs

(j,y) -0.480 (q,d) 0.612 (m,n) 0.211

(i,b) -0.435 (r,q) 0.601 (d,t) 0.229

(q,u) -0.426 (p,k) 0.589 (s, t) 0208

(x,e) -0.338 (b,q) 0.584 (n,t) 0.222

(i,x) -0.322 (p,w) 0.584 (f,v) -0.103

(u,w) -0.294 (w,f) 0.582 (m,g) 0.156

(c,x) -0.288 (b,k) 0.538 (o,t) -0.225

(s,x) -0.254 (j,r) 0.536 (a,n) -0.077

(f,o) -0.253 (t,q) 0.532 (s,g) 0.185

(i,j) -0.248 (f,m) 0.530 (b,l) 0.379

Table 4.15: Selected substitution edit distances as determined using a cognate-based method.

Spanish word Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4

ciudades ‘cities’ cidades (99.9) ciudad (199.6) cidade (199.8) idades (199.8)

‘cities’ ‘city’ ‘city’ ’ages’

seis ‘six’ seis (0) sis (99.8) sais (99.8) seio (99.8)

‘six’ ‘sis’ ‘salts’ ‘chest’

ocasiona ‘causes’ ocasiona (0) ocasione (99.8) ocasional (99.9) ocasionar (100.0)

‘causes’ ‘occasion’ ‘occasional’ ‘to cause’

otro ‘other’ otros (99.8) oro (99.9) outro (99.9) ouro (100.2)

‘other’ ‘gold’ ‘other’ ‘gold’

arriesgarnos ‘to risk’ arriscar-nos (299.6) arriscarmos (300.09) arrogarmos (399.6) carregarmos (399.8)

‘risk’ ‘to risk’ ‘to boast’ ‘we load’

Table 4.16: Examples of cognate-based neighbors (distances from the Spanish words are in paren-

theses) .



alignment model was held constant at IBM Model 1, which uses translation probabilities and nothing

else to determine alignments. Finally, even after the edit distance algorithm has been chosen, there

is one other edit-distance-related variable that can be varied, namely the number of closest edit

distance neighbors to consider when making the alignment. For all of the initial experiments, I held

this variable at 1. I tested each edit distance algorithm within these constraints, and the results are

summarized in Table 4.17

In Table 4.17, none of the more complex methods outperformed basic Levenshtein edit distance.

In order to see if this was perhaps because there was too great a range amongst the penalties in

the new methods, I reran these tests with various smoothing factors. For smoothing factor s, this

simply worked by adding s to every penalty in the edit distance algorithm, which decreases the

percentage difference between these penalties. For the vowel/consonant edit distance, I only ran

these experiments on the version with vc = 2, since that performed better in the preliminary tests.

In addition, of the 12 embedding-based methods, I only ran the smoothing tests on the CBOW edit

distance with w = 3 and the ngram method of determining insertion/deletion weights, as this was

the best performing of the twelve. For each of these methods, I re-ran the tests with smoothing

factors of 0.1, 1, 5, 10, and 100. For each of these methods, Table 4.18 shows the optimal smoothing

factor that was found, along with the performance associated with that smoothing factor.

Once the various methods have had their weights smoothed, the highest-performing edit dis-

tance algorithm is the cognate-based edit distance, which does roughly 1% better than basic Lev-

enshtein edit distance.

As a final edit-distance-related test, I varied the number of edit distance neighbors considered

when aligning (in all previously discussed experiments, this was held constant at 1). The results

of these experiments are in Table 4.19. Once more neighbors were considered, both the CBOW

embedding-based edit distance and the vowel/consonant-based edit distance overtook basic Lev-

enshtein edit distance, but cognate-based edit distance remained the highest performing. Also, in

general, performance improved as more neighbors were considered, but the improvements in perfor-

mance quickly leveled off above about 10 neighbors; in fact, the overall best performance observed

was cognate-based edit distance with 10 neighbors considered, which outperformed cognate-based

edit distance with 100 neighbors considered.

Discussion of edit distance results

In general, the more advanced edit distance algorithms did not bring much improvement over

the basic Levenshtein edit distance. There are a few possible reasons for this: First, each new

method relies on some assumptions that are not necessarily true. Feature-based edit distance and

embedding-based edit distance both assume that phonological similarity is an effective determiner

of whether two words are likely cognates, but phonological similarity may not be enough; moreover,

both of these methods also assume that orthography can effectively indicate phonological similarity,

but orthography and phonology can have a very strained relationship (as popularly illustrated by

the English words cough, rough, though, and through).

On top of those assumptions, embedding-based edit distance assumes that distributional sim-

ilarity implies phonological similarity, but in fact there are some reasons to suppose the contrary.



Method Precision Recall AER

Levenshtein edit distance 0.321 0.284 0.698

Vowel/consonant edit distance with

a vowel/consonant penalty of 2

0.315 0.279 0.704

Vowel/consonant edit distance with

a vowel/consonant penalty of 3

0.305 0.269 0.714

Feature-based edit distance with

more features

0.244 0.215 0.771

Count-based edit distance; w = 5,

method = average

0.218 0.192 0.796

Count-based edit distance; w = 3,

method = average

0.249 0.219 0.767

Count-based edit distance; w = 5,

method = ngram

0.213 0.188 0.800

Count-based edit distance; w = 3,

method = ngram

0.206 0.182 0.807

CBOW edit distance; w = 5,

method = average

0.247 0.218 0.768

CBOW edit distance; w = 3,

method = average

0.228 0.202 0.786

CBOW edit distance; w = 5,

method = ngram

0.220 0.194 0.794

CBOW edit distance; w = 3,

method = ngram

0.261 0.230 0.755

Skip-gram edit distance; w = 5,

method = average

0.231 0.204 0.783

Skip-gram edit distance; w = 3,

method = average

0.223 0.197 0.791

Skip-gram edit distance; w = 5,

method = ngram

0.234 0.199 0.789

Skip-gram edit distance; w = 3,

method = ngram

0.201 0.177 0.811

Cognate-based edit distance; d = 1 0.057 0.050 0.946

Cognate-based edit distance; d = 2 0.045 0.040 0.957

Table 4.17: Preliminary results for various edit distance algorithms.



Method Optimal smoothing factor Precision Recall AER

Levenshtein 0 0.321 0.284 0.698

VC 100 0.322 0.285 0.698

Feature 100 0.317 0.281 0.702

CBOW 10 0.319 0.282 0.701

Cognate, d = 1 10 0.329 0.291 0.691

Cognate, d = 2 1 0.332 0.294 0.688

Table 4.18: Smoothed results for various edit distance algorithms.

Method n = 1 n = 5 n = 10 n = 100

Levenshtein 0.698 0.675 0.673 0.672

VC 0.698 0.672 0.670 0.669

Feature 0.702 0.679 0.674 0.673

CBOW 0.701 0.675 0.672 0.670

Cognate 0.688 0.669 0.663 0.664

Table 4.19: Results for various edit distance algorithms with different numbers of neighbors.

For example, a language might have voicing assimilation of all consonants in a cluster. This would

therefore mean that [t] and [d] would never appear next to the same consonants as each other and

would thus have quite different distributions, despite only differing in voicing.

Furthermore, it may be the case that many of these methods are rendered of little use because

the only possible edit distance neighbors being considered are the words that actually occur in

the Portuguese corpus, which means that creating a more phonologically-informed model might

not do much good because all candidates are already phonologically well-formed. For example,

the feature-based edit distance algorithm would strongly indicate that blanco and branco are more

likely to be cognates than blanco and bkanco; but there is no real need to make this distinction

since no word like bkanco is going to occur in the Portuguese corpus anyway. If my aim were to

generate Portuguese words given Spanish words, then these distinctions would be more important

(since it would be crucial for the program to know not to generate bkanco from blanco), but since

I am instead building a discriminative model, these distinctions may have less impact.

On the positive side, however, cognate-based embedding distance likely performs the best of

the methods tested because its training most closely resembles the task upon which it is tested.

That is, it is both trained and tested on the task of predicting cognates, whereas other algorithms

use methods that only indirectly relate to the task of cognate determination.

Comparison of performance on known historical sound changes

The fundamental reason for trying all of these edit distance methods was to find the method that

could most reliably identify cognates. The previous section quantitatively assesses success at this

task, but it is not particularly easy to figure out how to interpret success at word alignment as a

metric of edit distance success. Therefore, to give a less rigorous but easier to comprehend metric



of success, this section assesses how well each edit distance model performs at figuring out to assign

low penalties to the charcter operations that correspond to common, systematic sound differences

between Spanish and Portuguese.

Accordingly, I establised a list of areas in which Spanish and Portuguese have systematic

differences in how they have evolved from Latin; these differences are listed below and are derived

from Boyd-Bowman (1980):

1. The Latin suffix -arius developed into -ero in Spanish but -eiro in Portuguese. Examples:

Sp. caldera “boiler", Port. caldeira “boiler"; Sp. primero “first", Port. primeiro “first"

(Boyd-Bowman 1980, 18-20)

2. The Latin suffix -aticus developed into Spanish -aje and Portuguese -agem. Examples: Sp.

viaje “journey", Port. viagem “journey"; Sp. coraje “courage", Port. coragem “courage"

(Boyd-Bowman 1980, 21-23)

3. In some non-word-initial positions, Latin <c> [k] became Portuguese <z> [z] but Spanish

<c> [s]. Examples: Sp. cocina “kitchen", Port. cozinha “kitchen"; Sp. placer “pleasure",

Port. prazer “preasure" (Boyd-Bowman 1980, 28-31)

4. Latin clusters of a consonant plus [l] became Spanish <j> [x] or Portuguese <lh> [L]. Exam-

ples: Sp. ojo “eye", Port. olho “eye"; Sp. lenteja “lentil", Port. lentilha “lentil" (Boyd-Bowman

1980, 35)

5. Latin [kt] clusters became Spanish <ch> [
>
tS] and Portuguese <it> [it]. Examples: Sp. noche

“night", Port. noite “night"; Sp. ocho “eight", Port. oito “eight" (Boyd-Bowman 1980, 41)

6. Latin word-initial [f] became a now-silent <h> in Spanish but remained as <f> [f] in Por-

tuguese. Examples: Sp. haba “broad bean", Port. fava “broad bean"; Sp. hender “to split",

Port. fender “to crack" (Boyd-Bowman 1980, 62-63)

7. Portuguese lost intervocalic <l> [l] and <n> [n], but Spanish did not. Examples: Sp. volar

“to fly", Port. voar “to fly"; Sp. general “general", Port. geral “general" (Boyd-Bowman 1980,

78)

8. In many instances, Portuguese removed instances of hiatus (often ones arising due to the

aforementioned deletion of [l] or [n] ) by merging consecutive vowels that were retained in

Spanish. Examples: Span. venir “to come", Port. vir “to come"; Span. leer “to read", Port.

ler “to read" (Boyd-Bowman 1980, 13)

9. Latin intervocalic [b] often became <v> [v] in Port but stayed <b> in Spanish. Examples: Sp.

deber “to owe", Port. dever “to owe"; Sp. caballo “horse", Port. cavalo “horse" (Boyd-Bowman

1980, 107-109)

10. Latin pl, cl, and fl developed into ll in Spanish and ch in Portuguese. Examples: Sp. llover

“to rain", Port. chover “to rain"; Sp. llamar “to call", Port. chamar “to call" (Boyd-Bowman

1980, 110)



11. Latin suffix -tas became -tad or -dad in Spanish or -tade or -dade in Portuguese. Examples:

Sp. libertad “freedom", Port. libertade “freedom"; Sp. bondad “goodness", Port. bondade

“goodness" (Boyd-Bowman 1980, 136)

12. Latin x [ks] developed into Spanish j [x] and Portuguese x [IS]. Examples: Sp. lujo “luxury",

Port. luxo “luxury"; Sp. fijar “to fix", Port. fixar “to fix" Boyd-Bowman (1980)[151]

Each of these sound differences has been converted into one or more character transformations

in Table 4.20. For example, the correspondence between Spanish <ch> and Portuguese <it> is

represented by two character operations, namely sub(c,i) and sub(h,t). The penalty for each of these

operations is then also given for each edit distance algorithm, along with the mean and median

penalties for all substitutions and all deletions (which are equivalent to insertions). Then, each

operation for which the given method assigned a lower-than-median penalty to that operation was

bolded; ideally, all of these operations would have bolded values because, given that all operations

in the table are common differences between Portuguese and Spanish, all of them should receive low

penalties. Of all the methods, the cognate-based method does best at assigning lower penalties to

these operations; and several of the ones it misses are those that deal with digraphs, which makes

sense since it was trained on single letters. Thus, even though the cognate-based method was not

trained on Spanish-Portuguese cognates, it does seem to have learned some relevant pan-Romance

characteristics by learning from French, Italian, and Portuguese.

4.6 Word alignment experiments

For each of the main distributions involved with the IBM Models (see Section 2.1.1 for descriptions

of these models), namely translation probability, alignment probability, fertility, and distortion, I

modified the relevant IBM model(s) to allow for the pivot language. Each of these modifications

is described in this section. For all experiments, I tried both Levenstein edit distance (since it is

the standard method) as well as the cognate-based edit distance that was found to be the highest-

performing edit distance algorithm in the previous experiments. Portuguese remained the pivot

language for all of these alignment model experiments. In each case, Portuguese parameters were

found by using the mgiza word alignment software (Gao and Vogel 2008); for running this software,

I used the conventional settings of 5 iterations of IBM Model 1, 5 iterations of the HMM (as a

replacement for IBM Model 2), 3 iterations of IBM Model 3, and 3 iterations of IBM Model 4.

4.6.1 Translation probability

In order to incorporate translation probability into a pivot-based model, I define the translation

probability t(e|s) between English word e and Spanish word s as

t(e|s) = argmax
p∈P

t(e|p)

ed(s, p)
(4.5)

where P is the set of all Portuguese words and ed(s, p) is the edit distance between s and p.



Change(s) Operation Levenshtein VC Feature CBOW Cognate

8 del(a) 1 101 103 11.24 0.87

8, 11 del(e) 1 101 103 11.25 0.75

1, 8 del(i) 1 101 103 11.12 0.64

8 del(o) 1 101 103 11.24 0.87

8 del(u) 1 101 103 11.13 0.92

2 sub(j,g) 1 101 102 10.12 0.83

2 ins(m) 1 101 103 11.28 1.18

3 sub(c,z) 1 101 102 10.17 0.76

4 sub(j,l) 1 101 102 10.12 1.48

4 ins(h) 1 101 103 11.23 0.82

5 sub(c,i) 1 102 104 10.17 1.15

5 sub(h,t) 1 101 102 10.11 1.33

6 sub(h,f) 1 101 101 10.26 0.94

7 del(l) 1 101 103 11.23 0.89

7 del(n) 1 101 103 11.05 0.91

8 sub(b,v) 1 101 102 10.14 1.42

9 sub(l,c) 1 101 103 10.09 1.33

9 sub(l,h) 1 101 102 10.24 1.38

12 sub(j,x) 1 101 103 10.27 0.94

− Mean substitution 1 101.7 102.7 10.23 1.18

− Median substitution 1 101 102 10.19 1.21

− Mean deletion 1 101 103 11.17 0.96

− Median deletion 1 101 103 11.23 0.92

Table 4.20: Edit distances for systematic phonological differences between Spanish and Portuguese.



Equation 2.5 (reproduced here as 4.6) can then be used essentially unchanged to generate a

sentence’s word alignments:

p(a|s, e) =

le
∏

i=0

t(ej |sa(j)) (4.6)

where a(j) is the index of the word in p to which ej is aligned. This definition encodes my assumption

that the Portuguese words with the smallest edit distance from the Spanish word under consideration

are most likely to have similar meanings to the Spanish word.

In the typical instantiation of IBM Model 1, the choice of which English word to align with

Spanish word s is made by iterating through all English words in the English sentence and finding

which has the greatest translation probability for s. This pivot-based formalism adds another layer

to that iteration: Now, for each Spanish word s, the choice of which word to align with is made by

iterating through all of s’s closest Portuguese edit distance neighbors, and for each of those iterating

through all English words in the English sentence, to find which pair of a Portuguese neighbor and

an English word yields the highest translation probability, and then aligning with that English word.

Tables 4.21 and 4.22 summarize the results when translation probability is the sole quantity

used to create the alignments, using Levenshtein edit distance and cognate-based edit distance

(respectively). Note that, in the iterative process of training the IBM models, each successive

model refines the translation probabilities of the one before it. Therefore, these tables show the

results using the Portuguese translation probabilities derived from each different IBM model (or the

HMM stage). In general, the higher the model was on which translation probabilities were trained,

the better the pivot-based word alignment algorithm performed.

Some researchers have found effective neural-based methods for assigning translation probabili-

ties (Yang et al. (2013), Tamura et al. (2014)). Therefore, in addition to the statistical methods for

calculating translation probability, I also tested the use of this neural-based method. The method

works as follows: Use a deep neural network with 2 hidden layers. To create the input, take pairs of

an English word e and a Portuguese word p, and then concatenate the word embeddings of e and p

to create an input vector for the network. I used GloVe embeddings for English (Pennington et al.

2014) and Polyglot embeddings for Portuguese (Al-Rfou et al. 2013). The output of the network

is then a single cell, and during training this is set to be t(e|p) as calculated using IBM Model 4.

Although Yang et al. (2013) and Tamura et al. (2014) both succeeded in achieving greater success

with their trained networks than with the IBM Model 4 on which the networks were trained due to

the greater generalizability that comes from using word embeddings, this neural-based aproach did

not yield very fruitful results for me, even after experimenting with the parameters of the network.

The neural-based results are also reported in Tables 4.21 and 4.22.

I also tested this system where, instead of taking the argmax of Equation 4.5, I summed across

all possible Portuguese neighbors. This yielded results that were comparable to the current methods

but slightly worse, so I stuck with the instantiation shown in 4.5.

4.6.2 Alignment probability

For the incorporation of alignment probability into this system, I made the assumption that Spanish

syntax is identical to Portuguese syntax, and thus the reorderings that operate between Spanish and



Model Precision Recall AER

IBM Model 1 0.379 0.335 0.644

HMM 0.447 0.394 0.581

IBM Model 3 0.461 0.407 0.568

IBM Model 4 0.470 0.413 0.561

Neural 0.122 0.073 0.909

Table 4.21: Alignment results based only on translation probabilities derived from various IBM

models, using Levenshtein edit distance as the edit distance algorithm.

Model Precision Recall AER

IBM Model 1 0.386 0.341 0.638

HMM 0.452 0.399 0.576

IBM Model 3 0.469 0.414 0.560

IBM Model 4 0.476 0.419 0.554

Neural 0.099 0.059 0.9236

Table 4.22: Alignment results based only on translation probabilities derived from various IBM

models, using cognate-based edit distance as the edit distance algorithm.

English are the same as the reorderings that operate between Portguese and English. Therefore,

since the alignment probabilities depend only on word indices (and not on word identitites), I use

the mgiza-trained Portuguese-English alignment probabilities unchanged as the Spanish-English

alignment probabilities. Equation 2.6 can then be used as in standard IBM Model 2 to generate

word alignments.

The results of this test, using the alignment probabilities created by various components of the

mgiza pipeline, are shown in Tables 4.23 and 4.24. As with the translation probabilities, performance

was better the higher the model used for alignment probabilities.

4.6.3 Fertility

For fertility, the assumption was made that a given Spanish word will have the same fertility

distribution as its cognates in Portuguese. Thus, fertility was incorporated as follows: For each

Spanish word s, choose the Portuguese word p that is the most likely intermediary between s and

Model Precision Recall AER

HMM 0.520 0.456 0.514

IBM Model 3 0.521 0.457 0.513

IBM Model 4 0.522 0.458 0.513

Table 4.23: Alignment results based on translation and alignment probabilities derived from various

IBM models, using Levenshtein edit distance as the edit distance algorithm.



Model Precision Recall AER

HMM 0.528 0.464 0.506

IBM Model 3 0.529 0.466 0.504

IBM Model 4 0.530 0.466 0.504

Table 4.24: Alignment results based on translation and alignment probabilities derived from various

IBM models, using cognate-based edit distance as the edit distance algorithm.

Model Precision Recall AER

IBM Model 3 0.493 0.404 0.556

IBM Model 4 0.493 0.405 0.555

Table 4.25: Alignment results based on translation probability, alignment probability, and fertility

derived from various IBM models, using Levenshtein edit distance as the edit distance algorithm.

any English word in the English sentence. Then, choose the fertility of s by sampling from the

fertility distribution of p. The test was run with the fertility distributions generated by both Model

3 and Model 4. In comparison to the performance with just translation and alignment probabilities,

the introduction of fertility made performance decrease in all cases.

4.6.4 Distortion

As with alignment probability, the assumption was made for distortion probability that Spanish

and Portuguese have identical syntax. In addition, although alignment probability is not at all

lexically dependent, distortion probability (at least as enacted by mgiza) is somewhat lexically

dependent−that is, it depends on the word class of the word under consideration. Therefore, in

order to incorporate the mgiza-trained Portuguese-English distortion probabilities into my model,

I also make the additional assumption that Spanish words tend to belong to the same word classes

as their Portuguese cognates. With these assumptions, for each Spanish word under consideration

I can use the exact distortion probability computed for its Portuguese edit distance neighbor and

then use Equation 2.8 unmodified. The results from this approach are shown in Tables 4.27 and

4.28. Fertility is not included in these calculations because it makes the results worse. In addition,

distortion can potentially be used as a replacement for alignment (since both model syntax in some

way), so these tables show the results of considering distortion on its own vs. both distortion and

alignment.

Model Precision Recall AER

IBM Model 3 0.505 0.412 0.546

IBM Model 4 0.503 0.411 0.548

Table 4.26: Alignment results based on translation probability, alignment probability, and fertility

derived from various IBM models, using cognate-based edit distance as the edit distance algorithm.



Model Precision Recall AER

IBM Model 4 0.514 0.452 0.519

IBM Model 2 + 4 0.536 0.470 0.500

Table 4.27: Alignment results based on translation, alignment, and distortion probability derived

from various IBM models, using Levenshtein edit distance as the edit distance algorithm.

Model Precision Recall AER

IBM Model 4 0.530 0.467 0.504

IBM Model 2 + 4 0.547 0.481 0.488

Table 4.28: Alignment results based on translation, alignment, and distortion probability derived

from various IBM models, using cognate-based edit distance as the edit distance algorithm.

4.6.5 Word alignment results

Results and discussion

Table 4.29 summarizes the results of the various word alignment tasks by indicating the best perfor-

mance for each type of word alignment system. Of the four main parameters used here (translation

probability, alignment probability, fertility, and distortion probability), all but fertility brought sig-

nificant improvements to the overall performance of my alignment method. The fact that fertility

did not improve performance may well be because the assumption that a given Portuguese word

will have the same fertility distribution as its Spanish cognates is not necessarily true; for example,

cognates can easily be different parts of speech, which can affect fertility. However, the success of

the other three parameters suggests that the other assumptions being made are at least somewhat

reasonable−that is, the success of translation probability suggests that edit distance can be useful

tool for determining lexical items, while the fact that alignment and distortion probabilities were

helpful suggests that Spanish and Portuguese have syntax that is similar enough to use the same

word order assumptions for each of them.

Visualization of performance

Figures 4.1 through 4.4 show visualizations of the alignments generated with different parameters

between the two sentences in one of the testing pairs. Figure 4.1 shows how translation probability

is enough to get many individual words correct, but that the resulting alignments are distributed

Model Precision Recall AER

Trans. prob. 0.476 0.419 0.554

Trans. & align. prob. 0.530 0.466 0.504

Trans. & align. prob. & fert. 0.503 0.411 0.548

Trans. & align. prob. & dist. 0.547 0.481 0.488

Table 4.29: Overall IBM model results



Figure 4.1: Visualization of a translation-probability-based alignment.

scattershot over the chart. Figure 4.2 shows much more order being imposed by the inclusion of

alignment probability. Figure 4.3 shows how fertility allows some words to be aligned to a different

number of words than 1. Finally, 4.4 shows how distortion probability brings similar effects as

alignment probability, but it does enforce slighlty more than alignment probability that there is

little jumping occurring between alignments.

4.7 Pivot language experiments

The last major dimension of variation in my model is the choice of a pivot language. I tested

7 different pivot languages of varying relatedness to Spanish, namely Spanish itself, Portuguese,

French, Italian, German, Danish, and Finnish. Figure 4.5 summarizes the relationships between

these languages: Spanish is obviously most closely related to itself, then Portuguese is its next closest

relative (as they are both in the Western Iberian group), then those two are joined by French in the

Western Romance group, then Italian is next closest related within the entire Romance group, then

German and Danish come next as other Indo-European languages, and finally Finnish is the outlier

as a member of the Uralic languages, not known to be related to the Indo-European languages at

all (Lewis et al. 2009).

We would expect that, the more closely related a language is to Spanish, the better it would

serve as a pivot language. Table 4.30 shows the results of using various pivot languages; in all cases,

the optimal word alignment parameters from the previous section were used (namely, factoring in



Figure 4.2: Visualization of a translation- and alignment-probability-based alignment.

Figure 4.3: Visualization of a fertility-, translation- and alignment-probability-based alignment.



Figure 4.4: Visualization of a translation-, alignment-, and distortion-probability-based alignment.

Figure 4.5: Family tree of the pivot languages used; language groups were derived from Ethnologue

Lewis et al. (2009).



Language Precision Recall AER

Spanish 0.682 0.602 0.360

Portuguese 0.536 0.470 0.500

Italian 0.458 0.402 0.571

French 0.416 0.361 0.613

German 0.300 0.259 0.722

Danish 0.289 0.251 0.732

Finnish 0.241 0.209 0.776

Table 4.30: Results from running the tests on various pivot languages.

translation probability, alignment probability, and distortion probability) while the edit distance

algorithm used was always Levenshtein edit distance, which I used instead of cognate-based edit

distance because it was unclear how best to deal with non-Romance languages in the realm of the

Romance-based cognate edit distances. It is indeed generally the case that the performance of

different pivot languages appears in the rank predicted by their relatedness within Figure 4.5. The

only exception is that French and Italian are swapped in their ranking in Table 4.30 compared to

their order predicted by Figure 4.5. One possible reason that the orders do not match perfectly

is that historical relatedness of languages is not actually the factor most directly tied to utility as

a pivot language; rather, the most important factor is lexical similarity. So, it may be the case

that Italian just happens to have a slightly more similar set of words to Spanish than French does.

Alternately, it may be that Italian syntax is more similar to Spanish syntax than French syntax is,

or this discrepancy may simply have arisen from chance.

It is interesting to note that Finnish, despite being unrelated to Spanish, still performs signif-

icantly better than the lower-bound baselines. This is likely because there are some words, such

as proper names and modern terms (such as the governmental terms that abound in this corpus),

which tend to be the same or similar even across unrelated languages. In addition, the definition

of word is quite liberal here and includes punctuation marks and numerals, which also tend to be

similar across European languages at least. All in all, then, any pivot language seems to be better

than no pivot language, but by far the best pivot language is one closely related to the low-resource

language in question.

I also tried allowing the algorithm to consider edit distance neighbors from more than one other

language. The theory behind this is that it might widen the net with which to catch a potential

cognate. As an example, suppose that Latin had two words for “red", namely red1 and red2, and

two words for “blue", namely blue1 and blue2. Further, suppose that Spanish inherited only red1

and blue1, while Portuguese inherited only red1 and blue2, and French inherited only red2 and blue1.

In this case, using both Portuguese and French would be beneficial because neither of them alone

gives a full picture of Spanish but, together, they manage to triangulate both Spanish color words.

In practice, however, any time that I allowed the aligner access to more than one pivot language, it

performed worse than the better-performing pivot language would do on its own.

From the baseline tests, it is apparent that enforcing a diagonal alignment leads to great in-



Language Precision Recall AER

Spanish 0.682 0.602 0.360

Portuguese 0.536 0.470 0.500

Italian 0.459 0.403 0.571

French 0.415 0.361 0.614

German 0.310 0.267 0.713

Danish 0.292 0.253 0.729

Finnish 0.255 0.221 0.763

Table 4.31: Results from running the tests with various pivot languages used for the translation

probablities but with Portuguese used for all alignment and distortion probabilities.

creases in performance even without any Spanish-specific knowledge added to the model. Therefore,

although we showed in the previous section that factoring in the syntactic proxies or alignment and

distortion probabilities did significantly improve performance, it is unclear if this is because the

alignment and distortion probabilities have encoded specific syntactic information or if the im-

provement comes solely from the fact that the alignment and distortion probabilities are enforcing

a diagonal alignment to some extent. To test this, I reran the tests in Table 4.30, but this time only

the language used to derive translation probabilities changed, while Portuguese was used as the

source of both the alignment and distortion probabilities in all cases. The results of these modified

tests are in Table 4.31, and in general they do support the notion that the alignment and distortion

probabilities are encoding at least some language-specific information, rather than just encoding a

pan-language preference for diagonal alignments. This is evident because, in all the non-Romance

languages (namely, German, Danish, and Finnish), substituting in Portuguese alignment and dis-

tortion probabilities decreased the AER, meaning that the Portuguese alignment and distortion

values are better proxies for Spanish than German, Danish, and Finnish values. Meanwhile, the

AERs for the Romance languages barely changed at all, suggesting that perhaps the alignment- and

distortion-based improvements come from some general syntactic factors that are constant across

Romance languages (meaning that any Romance language’s alignment and distortion values could

capture these facts) but that are not captured in non-Romance languages (rendering the alignment

and distortion values for other languages less useful). Thus, although most of the improvement

from language to language does seem to be due to language-specific differences in the translation

probabilities (for example, as Table 4.31 shows, Portuguese has an AER at least 0.07 better than all

other languages even when the language used to derive the translation probabilities is the only vari-

able), but there also do seem to be some improvements due to learned language-specific differences

in syntax.



Chapter 5

Summary of results

5.1 Results

Results for each main category of tests are show in Table 5.1. Overall, the best choices for the three

parameters were as follows:

1. Pivot language: Portuguese

2. Edit distance algorithm: Cognate-based edit distance

3. Alignment algorithm: Translation probality, alignment probability, and distortion

Aligning with these parameters performed significantly better than the random and diagonal

baselines, and it also came respectably close to the upper bounds on performance set by using

Spanish as a pivot language and by aligning with cdec. In general, the following trends were found

with respect to this data:

• Choice of edit distance algorithm does not have much effect on overall alighnment success

rate.

• Choice of alignment model is quite significant; each one of translation probability, alignment

probability, and distortion probability improves the overall results by a noticeable amount.

• Choice of pivot langauge has a significant effect on the overall performance; specifically, the

more closely-related the pivot language is to the low-resource language, the better the model

will perform.

5.2 Example translations

The motivation for pursuing this algorithm for word alignment was the utility of word alignment in

the task of machine translation; indeed, word alignment in and of itself does not accomplish much.

Therefore, to illustrate the potential of this technique to be used in machine translation, I have

45



Edit distance algorithm Alignment model Pivot language AER

- Random - 0.948

- Diagonal - 0.819

Levenshtein IBM M1 Portuguese 0.673

VC IBM M1 Portuguese 0.670

Feature-based IBM M1 Portuguese 0.674

char2vec IBM M1 Portuguese 0.672

Cognate-based IBM M1 Portuguese 0.663

Cognate-based IBM M1 Portuguese 0.554

Cognate-based HMM Portuguese 0.504

Cognate-based IBM M3 Portuguese 0.548

Cognate-based IBM M4 Portuguese 0.488

Levenshtein IBM M4 Portuguese 0.500

Levenshtein IBM M4 Italian 0.571

Levenshtein IBM M4 French 0.613

Levenshtein IBM M4 German 0.722

Levenshtein IBM M4 Danish 0.732

Levenshtein IBM M4 Finnish 0.776

Levenshtein IBM M4 Spanish 0.360

- fast-align - 0.288

Table 5.1: General results.



combined my word alignment technique with the Moses package for statistical machine translation

to create a rudimentary Spanish-English translation program.

The basic theory underlying this approach to translation is an application of Bayes’ rule. Given

a Spanish sentence s, we want to find its most likely English translation e. We could express this

by saying that the translation into English is

argmax
e

p(e|s)

Using Bayes’ rule, we can transform this formula and apply the standard trick of removing the

denominator (because s is constant):

argmax
e

p(e|s) = argmax
e

p(s|e)p(e)

p(s)
(5.1)

= argmax
e

p(s|e)p(e) (5.2)

p(s|e) can be modeled with word-alignment-based probabilities, which have been established

using my model. To round out the machine translation process, then, we just need to model p(e),

which Moses accomplishes through the use of an English trigram language model that it computes

from the training data. Some examples of Spanish Europarl test sentences , with their true English

translations and the English translations generated by this procedure, are given in Table 5.2.

Spanish: en el caso de turquìa la cuestión es diferente .

Correct English: in the case of turkey it is different .

Initial translation: i like case of turkey de justice mr different .

Updated translation: in the case of turkey the question is different .

As this table makes apparent, this model often struggles with the translation of short words.

The reason for this is that these translations depend heavily on using edit distance to find Portuguese

cognates of the given Spanish words. A typical cognate will differ by a character or two from its

version in the other language, and for long words a difference of a character or two is not very

significant. However, for short words, changing a character or two can make the word unrecognizable,

so essentially any word of the right length is a potential cognate of the word under consideration,

and it is difficult to sift through all the short words to find the right one.

Thus far, I have been treating Spanish as essentially a no-resource language; that is, I have

been assuming that we have zero Spanish data besides the Spanish sentence currently being aligned.

However, in the real world such a scenario is extremely unlikely; even the lowest-resourced languages

will typically have some data. As luck would have it, the sort of data that is available for a low-

resource language is exactly the sort of data that the translations in Table 5.2 would benefit most

from; that is, this translation model handles long words well but short words poorly, while the words

for which it is easiest to glean data from a small data set are the most common words−which tend

to be the short function words that this model struggles with. Therefore, I allowed myself the small

luxury of treating Spanish as a low-resource language rather than a no-resource language by looking

up a list of Spanish prepositions, articles, conjunctions, pronouns, and auxiliary verbs. All in all,

there were a total of 65 Spanish words found for this purpose. I then incorporated these 65 Spanish

words, along with their known translations, into the Moses model and gave high probabilities to



No. Spanish True English Initial Translation Updated Translation

1 a nuestro juicio es-

encial , ya que la

propiedad intelectual

es necesaria para

estimular al mismo

tiempo la innovación y

la investigación .

in our view , it has a

major part to play ,

as intellectual property

is required in order to

stimulate both innova-

tion and research .

the essential i will , de ,

that intellectual prop-

erty mr necessary to

stimulate by the time

de de innovation and

research .

to our will , essen-

tial , that the intellec-

tual property is neces-

sary for stimulate by

the time the innova-

tion and the research .

2 en este debate voy a

limitar mis observa-

ciones a la cuestión

de la coherencia y la

vinculación entre la

polìtica regional y la

polìtica de competen-

cia .

in this debate i will re-

strict my comments to

the issue of coherence

and the linkage be-

tween regional policy

and competition policy

.

i this debate to restrict

the comments that the

de justice of de coher-

ence and de it between

de regional policy and

the policy of compe-

tence .

in this debate to to re-

strict have remarks to

the question of the co-

herence and the link

between the regional

policy and the policy of

competence .

3 por lo tanto , los úni-

cos que viven real-

mente son los empre-

sarios privados .

so really only private

entrepreneurs are liv-

ing .

for are both , for only

that are really son for

private entrepreneurs .

for both him , the only

that are really are the

entrepreneurs private .

4 señora presidenta ,

señora comisaria ,

el grupo del partido

europeo de los lib-

erales , demócratas

y reformistas estú

enormemente preocu-

pado por el cambio

previsto del artìculo

23 de la constitución

de hong kong .

madam president ,

commissioner , the

group of the european

liberal , democrat

and reform party is

extremely concerned

about the planned

change to article

23 of hong kong ’s

constitution .

mr president , madam

commissioner , like

group of the european

of for liberal , demo-

crat and reform this

enormously concerned

for like exchange for

of article 23 of the

constitution of hong

kong .

mr president , madam

commissioner , the

group of the of the

european liberal ,

democrat and re-

form this enormously

concerned for the

exchange for of article

23 of the constitution

of hong kong .

5 el número de refugia-

dos que llegan al paìs

es muy reducido en

comparación con ale-

mania , gran bretaña y

otros paìses .

we have a very small

number of refugees

coming into the coun-

try , compared to

germany or to britain

and other countries .

like number of refugees

that are by my coun-

try mr reduced i com-

pared con germany , by

britain and other coun-

tries .

the number of refugees

that are by my coun-

try is reduced in com-

pared with germany ,

by britain and other

countries .

6 en el caso de turquìa la

cuestión es diferente .

in the case of turkey it

is different .

i like case of turkey de

justice mr different .

in the case of turkey

the question is differ-

ent .

Table 5.2: Example translations. The True English column shows the gold standard translation

for the Spanish sentence. The Initial Translation column shows the translation before the Spanish

function words were manually added to the Moses probability table. The Updated Translation show

the translation after the Spanish function words were included.



their known translations. Simply adding in these 65 words noticeably improved the quality of the

translations generated, as shown by the updated translations in Table 5.2.

Even in their updated versions, these translations are still far from perfect. Some of the

mistakes made can be directly linked to the translation technique used; for example, in sentence 2,

competencia is translated as competence rather than competition because Spanish competencia has

a much smaller edit distance from the Portuguese word for “competence" (namely, compotência)

than the Portuguese word for “competition" (which is concorrência). In addition, in sentence 4, the

translation has mr president where it should have madam president, likely because mr president is

more common in the training data than madam president and thus gets rated more positively by

the English language model. Despite these shortcomings, however, this translation method−which

was trained on essentially no Spanish data and which was not tuned or optimized at all−does

manage to roughly capture the meanings of the Spanish sentences it processes. The ability to create

low-quality translations that nonetheless capture the meaning of a sentence could have some very

real applications; for example, in a scenario in which a natural disaster strikes an area where a

low-resource language is spoken, distress calls may start to be sent in the low-resource language,

and a rapidly-generated rough translation of these distress calls could be all that is needed to inform

the relief workers where to direct their efforts. This existing translator performs quite poorly on

out-of-domain (i.e. non-political) text, but it can be supposed that a translator trained within the

proper domain could carry out such disaster-necessitated translations, so these translation examples

do therefore show that the technique of pivot-based word alignment used here can help tackle real-

world problems.



Chapter 6

Conclusion

In this thesis, I have shown that pivot-based word alignment is a viable technique for creating

word alignments that can be used to create rudimentary translations of novel text in a low-resource

language for which the computer does not have access to any training data. This model makes

use of the relationships between languages in the same language family, and the most successful

parameters are the ones that display some sensitivity to historical sound changes between languages

as well as language-specific lexical and syntactic information.

Throughout this paper, I have been assuming that there is no training data available at all,

but the situation will rarely be that dire; thus, future work could focus on how to integrate cross-

linguistic information when there are small (but non-zero) quantities of training data available. In

addition, it may be fruitful to investigate how these techniques can be applied to phrase-based

and/or neural machine translation to provide better translations than the rudimentary ones created

thus far. Finally, even for the high-resource training languages in this project, I have not been using

as much training data as may be necessary to achieve state-of-the-art word alignments, so further

work could also embrace the big-data approach for the high-resource training to see if that further

improves performance with the low-resource language.
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